"As far as the laws of mathematics refer to reality, they are not certain; and as far as they are certain, they do not refer to reality."

- Albert Einstein (1879-1955)

Statistics:

"The science of producing unreliable facts from reliable figures."

- Evan Esar
"Facts are stubborn, but statistics are more pliable."
- Mark Twain
"I can prove anything by statistics except the truth."
- George Canning

Two main branches:

Descriptive Statistics:

Trying to describe a data set with a few or several numbers.

Predictive or Inferential Statistics:

Trying to reach conclusions beyond an original data set.

OPENING PROBLEM

A farmer is investigating the effect of a new organic fertiliser on his crops of peas. He has divided a small garden into two equal plots and planted many peas in each. Both plots have been treated the same except the fertiliser have been used on one but not the other.
A random sample of 150 pods is harvested from each plot at the same time, and the number of peas in each pod is counted. The results are:

Without fertiliser

46565646495368546865674652865655544467567556
48537536475657576754755566567586867663768334 47656457377677466567634663767686666476653867 686766684486626573

With fertiliser

6774955589897758766797778937485108676756 87944968587747810610777977868687486873876 9769768395768797848777668638587674966684 78977475747646776787667867105134711

Things to think about:

- Can you state clearly the problem that the farmer wants to solve?
- How has the farmer tried to make a fair comparison?
- How could the farmer make sure that his selection was at random?
- What is the best way of organising this data?
- What are suitable methods of displaying the data?
- Are there any abnormally high or low results and how should they be treated?
- How can we best describe the most typical pod size?
- How can we best describe the spread of possible pod sizes?
- Can the farmer make a reasonable conclusion from his investigation?

KEY STATISTICAL CONCEPTS

A collection of individuals about which we want to draw conclusions.
The collection of information from the whole population.
A subset of the population. It is important to choose a sample at random to avoid bias in the results.

The collection of information from a sample.

- Data (singular datum) Information about individuals in a population.

A numerical quantity measuring some aspect of a population.
A quantity calculated from data gathered from a sample. It is usually used to estimate a population parameter.

- Distribution

The pattern of variation of data. The distribution may be described as:

symmetrical

positively skewed

negatively skewed

- Outliers

Data values that are either much larger or much smaller than the general body of data. They should be included in an analysis unless they are the result of human or other error.

A discrete numerical variable takes exact number values and is often a result of counting.
A continuous variable takes numerical values within a certain continuous range. It is usually a result of measuring.

Ways to display data:

Graphs:

Frequency histogram

Relative frequency histogram

Tables

Length (cm)	Frequency
$3 \leqslant l<4$	3
$4 \leqslant l<5$	6
$5 \leqslant l<6$	5
$6 \leqslant l<7$	4
$7 \leqslant l<8$	2

Stem \& Leaf Plot

Stem	Leaf
3	167
4	224679
5	04468
6	0067
7	$23 \quad$ Scale: $3 \mid 1$ means 3.1 cm

Others to come...
HW 14A \#1-4

B
 MEASURING THE CENTRE OF DATA

...or in the US....Measures of Central Tendency

Average is a generic term to mean one number that describes a set of numbers.
Mean:
There is more than one type of mean. Most common is the arithmetic mean.
Mean of a sample: $\bar{X}=\frac{\sum_{i=1}^{n} x_{i}}{n}$
Mean of a population: $\mu=\frac{\sum_{i=1}^{N} x_{i}}{N}$

Median

The middle number in an ordered series of numbers (for n odd)
If n is even, find the arithmetic mean of the middle two numbers.

Mode:

The number that occurs most often.
There can be multiple modes.

Which is best? Mean, Median or Mode:

Consider 3,3,3,3,3,10000
1,1,1,1,5,5,5,800
1,1,1,1,2,12,13,13,13

For distributions that are symmetric, the mean or median will be approximately equal.

mean and median

If the data set has symmetry, both the mean and the median should accurately measure the centre of the distribution.

If the data set is not symmetric, it may be positively or negatively skewed:

Notice that the mean and median are clearly different for these skewed distributions.

SL: Opening problem
 14A \#3, 4
 14B. 1 \#3,5,8,9,11,12,14

Calculations from data summaries

Consider the table below. How can you calculate the mean (efficiently):

Data value (x)	Frequency (f)	Product $(f x)$
3	1	$1 \times 3=3$
4	1	$1 \times 4=4$
5	3	$3 \times 5=15$
6	7	$7 \times 6=42$
7	15	$15 \times 7=105$
8	8	$8 \times 8=64$
9	5	$5 \times 9=45$
Total	$\sum f=40$	$\sum f x=278$

$\bar{x}=\frac{\sum_{i=1}^{k} f_{i} x_{i}}{\sum_{i=1}^{k} f_{i}}$ where k is the number of different data values.
This formula is often abbreviated as $\bar{x}=\frac{\sum f x}{\sum f}$.

Finding the median from a summary of data.
To find the center number(s) it would help to have the cumulative frequency

Data Value	Frequency	Cumulative Frequency
3	1	$1 \longleftarrow$ one number is 3
4	1	$2 \longleftarrow$ two numbers are 4 or less
5	3	$5 \longleftarrow$ five numbers are 5 or less
6	7	$12 \longleftarrow 12$ numbers are 6 or less
7	15	$27 \longleftarrow 27$ numbers are 7 or less
8	8	$35 \longleftarrow 35$ numbers are 8 or less
9	5	$40 \longleftarrow$ all numbers are 9 or less
Total	40	

Working with data in "classes"

Skate purchases					
Price range	$50-75$	$76-85$	$86-95$	$96-105$	$106-120$
\# of purchases	7	15	11	7	4

What was the mean price of skates purchased?

Use the midpoint of a range when data is grouped in classes.

MEASURING THE SPREAD OF DATA

We'll explore four measures - the range, the interquartile range, the variance and the standard deviation.

Range: The total spread between the extremes.
Largest - smallest = 18-1=17
Not particularly meaningful in many cases

Quartiles: Break the data into four groups:
Begin by finding the median

The median of the lower half of the data is called the Lower Quartile 25% of the data is \leq the lower quartile
Also known as Q1 or the 25th percentile

The median of the upper half of the data is called the Upper Quartile
75% of the data is \leq the upper quartile
Also known as Q3 or the 75th percentile

The difference between the upper and lower quartiles is called the Interquartile Range

The middle 50\% of the data lie within the interquartile range Also known as the IQR = Q3-Q1

HW: 14C.1: 2, 4, 5

Box \& Whisker Plots Display 5 numbers effectively:

> Minimum Q1 Median Q3 Maximum (aka) five number summary

Box \& Whisker Plot Features:

1) Half the data are in the "box"
2) Half the data are in the whiskers, 25% low, 25% high

Your calculator will do them!

SL:	14B. 2	$\# 2,4,5,7,8,10$
	$14 B .3$	$\# 2,3$
SL:	14 C .1	$\# 2,4,5$
	14 C .2	$\# 2,3,6$

We can graph Cumulative Frequency to visualize it. Remember the table:

Data Value	Frequency	Cumulative Frequency
3	1	
4	1	
5	3	
6	7	
7	15	
8	8	
9	5	
Total	40	

What questions can we answer from it?

Can we find the 5 number summary from it?

Percentile:

Lake Wobegon: "...where all the kids are above average"

What does it mean to be in the 75th percentile in height for HS students?
75% of students are shorter than you!

Q1 is the 25th percentile
Q2 is the 50th percentile
Q3 is the 75th percentile

Technology and statistics - the perfect combination!
Excel: Easy entry, powerful capabilities, can see/graph/save data Calculators: Increasingly powerful, portable, TI-nSpire!
Software: Readily available, some web based, very sophisticated niche markets (Geo-statistics)

Consider the data set:

$$
523364537571895
$$

One dimensional statistics - enter in L_{1}
Calculate the 5 number summary
Box \& Whisker
Histogram/column graph

SL: 14D \#1-7 odd

14E \#1-3

F VARIANCE AND STANDARD DEVIATION

The 5 number summary:

+ Easy to calculate
+ A lot of info for not much calculation
- Information can be hidden within a quartile

Consider calculating the distance of each data point from the mean $x-\bar{x}$
This is sometimes referred to as the "error" and would be a good measure of variation if we sum them. But the sum would always be zero (can you prove that?)

But if we square these differences they will sum OK. To correct for the number of values we can divide by that number and define:

The variance of a data set: $s_{n}{ }^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}$
Some characteristics of the variance:

The differences being summed are a measure of how far each value deviates from the mean.

By squaring them, we make them all positive and weight larger errors more.

Dividing by n finds how far on average the data is from the mean.

If the sum in the numerator is small, most of the values are close to the mean.

The standard deviation of a data set is the square root of the variance.

$$
s_{n}=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}}
$$

Some characteristics of the standard deviation:

The units are the same as for the data (handy)
A few large "errors" can change it significantly since the difference from the mean is squared.

Therefore is is called a non-resistant measure of spread.
It's good for symmetric data. IQR and percentiles are better for skewed data.

Populations vs. Samples

Notation for these measures is different to help distinguish:

	Population	Sample
Mean	μ	\bar{x}
Variance	σ^{2}	\boldsymbol{S}_{n}^{2}
Standard Deviation	\boldsymbol{S}	\mathbf{S}_{n}

We draw inferences from sample statistics to estimate population parameters.

When a sample of size n is used to draw inference about a population:

- the mean of the sample \bar{x} is an unbiased estimate of μ
- $s_{n-1}^{2}=\left(\frac{n}{n-1}\right) s_{n}^{2}$ is an unbiased estimate of the variance σ^{2}.

Note: Even if s_{n-1}^{2} is an unbiased estimate of σ^{2}, this does not imply that s_{n-1} is an unbiased estimate of σ.

$$
\begin{aligned}
& S_{n-1}^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n} \cdot\left(\frac{n}{n-1}\right)=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1} \\
& \text { Why?: Applet } \quad \text { Why?: Video Proof }
\end{aligned}
$$

Why?: The values in the sample will generally be closer to the sample mean than they are to the population mean so the sum on top is a bit smaller than it would be if we know the population mean. To correct for that, we use $n-1$ in the denominator.

This is known as Bessel's Correction.
For more see: http://en.wikipedia.org/wiki/Bessel\'s_correction
An unbiased estimate of the population variance uses $n-1$ in the denominator! Know which one you're using!

Important: On your calculator, the value S_{x} represents the unbiased standard deviation of a population assuming that the values in the list represent only a sample of that population. In other words, it uses $n-1$ in the denominator. The value calculated in σ_{x} uses n in the denominator assuming that your list is the entire population.

Standard Deviation for Summarized (grouped) data
$\bar{x}=\frac{\sum_{i=1}^{n} f_{i} x_{i}}{\sum_{i=1}^{n} f_{i}}=\frac{60}{20}=3$
$s=\sqrt{\frac{\sum_{i=1}^{n} f\left(x_{i}-\bar{x}\right)^{2}}{\sum_{i=1}^{n} f_{i}}}$ or $\sqrt{\frac{\sum f\left(x_{i}-\bar{x}\right)^{2}}{\sum f}}=\sqrt{\frac{26}{20}}=\sqrt{\frac{13}{10}} \approx 1.14$

$$
\begin{array}{lll}
\text { SL: } & 14 F .1 & \# 1,3,5-9 \\
& 14 F .2 & \# 2 \\
& 14 F .3 & \# 3,4,5
\end{array}
$$

Simplifying the calculation of variance

Notice that we can rewrite the calculation of a sample variance as shown below. This generally makes the calculation simpler.

$s_{n}{ }^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n}=\frac{\sum_{i=1}^{n}\left(x_{i}^{2}-2 x_{i} \bar{x}+\bar{x}^{2}\right)}{n}$	Start with the definition and expand the square.
$s_{n}{ }^{2}=\frac{\sum_{i=1}^{n} x_{i}^{2}}{n}-\frac{\sum_{i=1}^{n} 2 x_{i} \bar{x}}{n}+\frac{\sum_{i=1}^{n} \bar{x}^{2}}{n}$	Summation distributes over terms (could you prove that?)
$s_{n}{ }^{2}=\frac{\sum_{i=1}^{n} x_{i}^{2}}{n}-\frac{2 \bar{x} \sum_{i=1}^{n} x_{i}}{n}+\frac{\bar{x}^{2} \sum_{i=1}^{n} 1}{n}$	Constants can be factored out of a summation. 2 and \bar{x} are both constants. Why do we need to leave n $\sum_{i=1}^{n} 1$ in the third numerator and what does it mean?
$s_{n}{ }^{2}=\frac{\sum_{i=1}^{n} x_{i}^{2}}{n}-2 \bar{x}\left(\frac{\sum_{i=1}^{n} x_{i}}{n}\right)+\frac{n \bar{x}^{2}}{n}$	Rewrite more simply
$s_{n}^{2}=\frac{\sum_{i=1}^{n} x_{i}^{2}}{n}-2 \bar{x}^{2}+\bar{x}^{2}$	The factor in parentheses is just the
mean.	
$s_{n}^{2}=\frac{\sum_{i=1}^{n} x_{i}^{2}}{n}-\bar{x}^{2}$	Combine terms for a simpler form.

Standard Deviation and the Normal Distribution

The classic symmetric, bell shaped distribution is known as the Normal Distribution

More in Chapter 29
Connections between standard deviation and the normal distribution:

The first σ from the mean represents the inflection points of the curve. About 68% of the data fall within 1σ of the mean.
About 95% of the data fall within 2σ of the mean.
About 99.7% of the data fall within 3σ of the mean.

> SL: 14G \#1, 3,4

