Probability:

Understanding the likelihood of something happening.

Properties of probabilities
They are numbers between 0 and 1
0 means the event under consideration is impossible
1 means the event under consideration is certain
Sometimes expressed as a percent or as a fraction
Not the same as odds

Very commonly used in real world applications:

OPENING PROBLEM

Life Insurance Companies use statistics on life expectancy and death rates to work out the premiums to charge people who insure with them.
The life table shown is from Australia. It shows the number of people out of 100000 births who survive to different ages, and the expected years of remaining life at each age.

LIFE TABLE						
Male				Female		
Age	Nunher swrviving	Expected remaining life	Age	Number swrviving	Expected remaining Ife	
0	100000	73.03	0	100000	79.46	
5	98809	68.90	5	99307	75.15	
10	98698	63.97	10	99125	70.22	
15	98555	59.06	15	98956	65.27	
20	98052	54.35	20	98758	60.40	
25	97325	49.74	25	98516	55.54	
30	96688	45.05	30	98278	50.67	
35	96080	40.32	35	98002	45.80	
40	95366	35.60	40	97615	40.97	
45	94323	30.95	45	96997	36.22	
50	92709	26.45	50	95945	31.59	
55	89891	22.20	55	94285	27.10	
60	85198	18.27	60	91774	22.76	
65	78123	14.69	65	87923	18.64	
70	67798	11.52	70	81924	14.81	
75	53942	8.82	75	72656	11.36	
80	37532	6.56	80	58966	8.38	
85	20998	4.79	85	40842	5.97	
90	8416	3.49	90	21404	4.12	
95	2098	2.68	95	7004	3.00	
99	482	2.23	99	1953	2.36	

For example, we can see that out of 100000 births, 98052 males are expected to survive to the age of 20 , and from that age the survivors are expected to live a further 54.35 years.

Things to think about:

- Can you use the life table to estimate how many years you can expect to live?
- Can you estimate the probability of a new-born boy or girl reaching the age of 15 ?
- Can the table be used to estimate the probability that:
- a 15 year old boy will reach age 75
- a 15 year old girl will not reach age 75 ?
- An insurance company sells policies to people to insure them against death over a 30-year period. If the person dies during this period, the beneficiaries receive the agreed payout figure. Why are such policies cheaper to take out for a 20 year old than for a 50 year old?
- How many of your classmates would you expect to be alive and able to attend a 30 year class reunion?

Experimental probability:

The relative frequency of something occurring.
(Relative as compared to something else occurring.)

Find the experimental probability of the pig landing in various orientations.

Calculate $\frac{\text { Number of favorable outcomes }}{\text { Total number of out comes }}$

Landing orientation	Probability
Back	
Feet	
Side (dot up)	
Half Side (dot up)	
Side (dot down)	
Ear	
Snout	

Sample Space: The set of all possible outcomes of an experiment.

Often denoted as U. (as in Universe)

What is the sample space for pig landing orientations?

Representations of Sample Space:

Lists
Standing
Back
Side (dot down)
Side (dot up)
Snout
Tailstand

Tables

Landing orientation	Probability
Standing	
Back	
Side (dot down)	
Side (dot up)	
Snout	
Tailstand	
Other	

Grid Diagrams
(Experiments with 2 trials)

First Pig

Tree Diagrams

Venn Diagrams
(More on this later)

Theoretical Probability

In some situations symmetry will define an expected probability. Consider:

A fair die A fair coin A spinner with equal (unequal?) areas
A fair die with sides labelled 1,1,1,2,3,4
The sum of the values when two dice are rolled (Craps!)
The result of a Roulette spin

Among equally likely events, the mathematical or theoretical probability of an event A is given by:

$$
\mathrm{P}(A)=\frac{\text { the number of members of the event } A}{\text { the total number of possible outcomes }}=\frac{n(A)}{n(U)} .
$$

Two events are complementary events if exactly one of them must occur.
Examples:
Heads \& Tails
Roll a 6 and Roll something other than a 6 (Not 6)

The complement of A is written as A^{\prime}.
Some properties of theoretical probability:

$$
\begin{array}{ll}
0 \leq P(A) \leq 1 & \text { By definition } \\
P(A)+P\left(A^{\prime}\right)=1 & \text { Something must occur! }
\end{array}
$$

HW:	15 A	Opening problem 1-4
	15 B	$\# 1-3$
	15 C .1	$\# 1,3,5,6,7$
	15 C .2	$\# 1-3$

Tables of outcomes

A helpful representation when there are two categorical variables to represent:

	Brown	Black	Blonde	Red
Men	15	10	4	1
Women	12	5	15	3

Compound Events

Exploring the probability of two or more events occurring.
Consider flipping a coin and rolling a die.
What is the probability of getting a heads and a 5 ?

Independent Compound Events

If the occurrence of event A does not affect the occurrence of event B (and vice versa) then A and B are called independent events.

For independent events
$\mathrm{P}(A$ and $B)=\mathrm{P}(A) \cdot \mathrm{P}(B)$

Similarly for more than two independent events:
$\mathrm{P}(A$ and B and $C)=\mathrm{P}(A) \cdot \mathrm{P}(B) \cdot \mathrm{P}(C)$

Dependent Compound Events

If the occurrence of event A does affect the occurrence of event B (or vice versa) then A and B are called dependent events.

Consider a bowl with 5 red marbles and 5 green marbles. What is the probability of selecting a red then a green marble?
$P($ Red $)=0.5$ but then $P($ Green $)=\frac{5}{9}$
For dependent events
$\mathrm{P}(A$ then $B)=\mathrm{P}(A) \cdot \mathrm{P}(B$ given that A occurred $)$

HW:	15D	$\# 1-3$
	15 E .1	$\# 1-6$
	15 E .2	$\# 1-4$

Using Tree Diagrams

Very powerful - and will be even more useful as we proceed!
Consider rolling a die, then flipping a coin (independent events)

The probability of a particular sequence is the product along that path.

Tree Diagrams can also be used for dependent events.
Consider a box with 5 green, 5 red, and 5 blue balls.
You select three balls without replacement.
Sampling without replacement creates dependent events.
Probability of a particular sequence is the product along the paths

Binomial Probabilities
A phenomenon with exactly two possible outcomes is called binomial.
Binomial probabilities have special characteristics:

$$
\text { If } \mathrm{P}(A)=p \text {, then } \mathrm{P}\left(A^{\prime}\right)=1-p \quad \text { Since total probability must be } 1 .
$$

A common question:

What is the probability of getting exactly x occurrences of A in n trials?
For example, I flip a coin 10 times. What is the probability of getting exactly 5 heads? Guesses?

Start with some smaller numbers to reveal a pattern. Consider 2 trials:

So the number of ways to get 5 heads in 10 flips is:

$$
\begin{aligned}
& C_{5}^{10}={ }_{10} C_{5}=\binom{10}{5}=\frac{10!}{5!(10-5)!}=\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{5 \cdot 4 \cdot 3 \cdot 2(5 \cdot 4 \cdot 3 \cdot 2)} \\
& =\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{5 \cdot 4 \cdot 3 \cdot 2}=\frac{9 \cdot 8 \cdot 7 \cdot 6}{4 \cdot 3}=9 \cdot 2 \cdot 7 \cdot 2=36 \cdot 7=252
\end{aligned}
$$

The total number of possible outcomes for n flips is the sum of the values in row n.

Notice that this is given by 2^{n}
Hence, the probability of getting exactly 5 heads in 10 flips is:

$$
\frac{252}{2^{10}}=\frac{252}{1024} \approx 0.246 \text { or } 24.6 \%
$$

In the example above (a fair coin) the probability of getting heads and tails is the same. More generally,

Given a binomial phenomenon with $\mathrm{P}(A)=p$ and $\mathrm{P}\left(A^{\prime}\right)=1-p$ the probability that A occurs x times in n trials is given by

$$
\binom{n}{x} p^{x}(1-p)^{n-x}
$$

On a TI-84, this is given by: binompdf(n, p, x).
For example, $\boldsymbol{\operatorname { b i n o m p d f }}(10,0.5,5)=0.246$ as above.
Find the probability of getting exactly 3 ones in 10 rolls of a fair die.
Write out the calculation, find it manually using your calculator for computations then verify using binompdf on your calculator.

Other kinds of questions

a) Find the probability of getting no more than 3 ones in 10 rolls of a fair die.

No more than means rolling $0,1,2$, or 3 ones. Add those probabilities together! It's called the cumulative probability.
Find it using your calculator with binomcdf(10, 1/6, 3) $=0.930$
b) Find the probability of getting at least 3 ones in 10 rolls of a fair die

At least 3 means rolling 3, 4, 5, or 6 ones. Add those probabilities together! You can use binomcdf on your calculator but be careful:

$$
\text { binomcdf always calculates the probability of getting no more than } \boldsymbol{x} \text {. }
$$

To find at least x, calculate $\mathbf{1}$ - $\operatorname{binomcdf}(n, p, x-1) \ldots$.(can you explain why we use $x-1$?) In this case, 1 - binomcdf(10, 1/6, 2)

I
 SETS AND VENN DIAGRAMS

Venn Diagrams
A way to represent the relationship between events.
Sample space U is drawn as a rectangle (or the outermost oval)
Events of interest are drawn with circles and ovals containing the favorable outcomes of that event.

Overlapping regions indicate that an outcome is part of multiple events.

Areas are not drawn proportionally to the number of outcomes inside

Set Notation
The following notation is taken from the HL IB notation sheet

$\left\{x_{1}, x_{2}, \ldots\right\}$	the set with elements x_{1}, x_{2}, \ldots	$A=\{1,2,3\}, B=\{3,4,5\}$
$n(A)$	the number of elements in the finite set A	$n(A)=3$
$\{x \mid\}$	the set of all x such that	$A=\{x \mid x \in\{1,2,3\}$
ϵ	is an element of	$2 \in\{1,2,3\}$ or $2 \in A$
\pm	is not an element of	$5 \pm\{1,2,3\}$ or $5 \notin A$
\varnothing	the empty (null) set	$\{x \mid x+2=x+7\}=\varnothing$
U	the universal set	Context specific: coin flip $U=\{\mathrm{H}, \mathrm{T}\}$
\checkmark	union	$A \cup B=\{1,2,3,4,5\}$ (aka logical and)
n	intersection	$A \cap B=\{3\}$ (aka logical or)
c	is a proper subset of	\{1, 2\} $\subset A$
\subseteq	is a subset of	$\{1,2,3\} \subseteq A$ but $\{1,2,3\} \not \subset A$
A^{\prime}	the complement of the set A	$A^{\prime}=\{x \mid x \in U \cap X \notin A\}$ or $A^{\prime}=\{x \mid x \in \mathbb{R} \cap x \notin\{1,2,3\}\}$
$A \times B$	the Cartesian product of sets A and B (that is, $A \times B=\{(a, b) \mid a \in A, b \in B\}$)	
		$A \times B=\{(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,3),(3,4),(3,5)\}$

\square

B^{\prime}

$(A \cup B) \cap(A \cap B)^{\prime}$

$$
A^{\prime} \cup B^{\prime}=(A \cap B)^{\prime}
$$

Conjecture: Set operations are commutative but not associative Can you prove this?

Some Set Identities

$$
\begin{aligned}
& \mathrm{P}\left(A^{\prime} \cup B^{\prime}\right)=\mathrm{P}\left((A \cap B)^{\prime}\right)=1-\mathrm{P}(A \cap B) \\
& \mathrm{P}\left(A^{\prime} \cap B^{\prime}\right)=\mathrm{P}\left((A \cup B)^{\prime}\right)=1-\mathrm{P}(A \cup B)
\end{aligned}
$$

LAWS OF PROBABILITY

Consider:
In a class of 25 students, 14 like pizza and 16 like iced coffee. One student likes neither and 6 students like both. One student is randomly selected from the class.
What is the probability that the student likes either pizza or coffee?

Draw a Venn Diagram

Notice that when we add $n(P)+n(C)(14+16)$ we are counting 6 students twice.
To find our answer, we can subtract: $n(P)+n(C)-n(P \cap C)$

In general, then the Addition Law of Probability states that:

$$
\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)
$$

...or in words...
$\mathrm{P}($ either A or $B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}($ both A and $B)$.

Note that for disjoint events, $\mathrm{P}($ both A and $B)=0$. So for this case

$$
\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)
$$

Is the converse true? Can you prove it?

Try one
In a class of 40 students, 34 like bananas, 22 like pineapples, and 2 dislike both. What is the probability that a student likes either bananas or pineapples?

$$
\mathrm{P}(B \cup P)=\mathrm{P}(B)+\mathrm{P}(P)-\mathrm{P}(B \cap P)
$$

$$
P(B \cup P)=\frac{34}{40}+\frac{22}{40}-\frac{18}{40}=\frac{38}{40}=\frac{19}{20}
$$

Conditional Probability
$A \mid B$ means that A occurs, given that B has already occurred.

Also written as \boldsymbol{A} given \boldsymbol{B}.

In a class of 25 students, 14 like pizza and 16 like iced coffee. One student likes neither and 6 students like both. One student is randomly selected from the class. What is the probability that a student who likes pizza also likes coffee?

Refer to the Venn Diagram

If we know they liked pizza, then there are only 14 people in the sample space.
Of those, 6 like coffee. So the answer is $\frac{6}{14}$ or $\frac{3}{7}$
Algebraically:

Generally the Conditional Law of Probability states that:

$$
\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)} .
$$

Notice that the position in the fraction is very important! Understand why! Your turn:
In a class of 40 students, 34 like bananas, 22 like pineapples, and 2 dislike both. What is the probability that a student who likes pineapples also likes bananas?

$P(B \mid P)=\frac{P(B \cap P)}{P(P)}=\frac{\frac{18}{40}}{\frac{22}{40}}=\frac{18}{40} \cdot \frac{40}{22}=\frac{18}{22}=\frac{9}{11}$

HW:	$15 I .1$	$\# 1-9$
	$15 I .2$	$\# 1-3$
	15 J	$\# 1-11$
Ready for		
Practice: \#4,7,9,10,11,12,14		

INDEPENDENT EVENTS

Our previous definition

If the occurrence of event A does not affect the occurrence of event B (and vice versa) then A and B are called independent events.

For independent events

$$
\mathrm{P}(A \text { and } B)=\mathrm{P}(A) \cdot \mathrm{P}(B)
$$

Using algebraic notation

A and B are independent events $\Leftrightarrow \mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$.
Note the if and only if. This allows us to answer questions like:
A is getting heads on a coin, B is getting less than 3 on a die. Show that A and B are independent.

$$
P(A)=\frac{1}{2} \text { and } P(B)=\frac{1}{3} \text { so } P(A) \cdot P(B)=\frac{1}{6}
$$

Using a grid or tree diagram, we can show that $\mathrm{P}(A$ and $B)=\mathrm{P}(A \cap B)$ is also $\frac{1}{6}$
Therefore, A and B are independent.

Another observation:

Refer back to the addition law of probability:

$$
\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B) .
$$

But when A and B are independent, the last term is just $\mathrm{P}(A) \mathrm{P}(B)$. So the implication is:

$$
A \text { and } B \text { are independent } \Leftrightarrow P(A \cup B)=P(A)+P(B)-P(A) \cdot P(B)
$$

Some problems that these ideas illuminate:

```
Example 27
    P}(A)=\frac{1}{2},\quad\textrm{P}(B)=\frac{1}{3}\quad\mathrm{ and }\quad\textrm{P}(A\cupB)=p.\quadFind p if
    a }A\mathrm{ and B are mutually exclusive b A and B}\mathrm{ are independent.
    a If A and B are mutually exclusive, }A\capB=\varnothing and so P(A\capB)=
            But }\quad\textrm{P}(A\cupB)=\textrm{P}(A)+\textrm{P}(B)-\textrm{P}(A\capB
                p=\frac{1}{2}+\frac{1}{3}-0=\frac{5}{6}
    b If A}\mathrm{ and }B\mathrm{ are independent, P}(A\capB)=\textrm{P}(A)\textrm{P}(B)=\frac{1}{2}\times\frac{1}{3}=\frac{1}{6
            P}(A\cupB)=\frac{1}{2}+\frac{1}{3}-\frac{1}{6}\mathrm{ and hence }p=\frac{2}{3
```


Example 28

Given $\mathrm{P}(A)=\frac{2}{5}, \quad \mathrm{P}(B \mid A)=\frac{1}{3} \quad$ and $\quad \mathrm{P}\left(B \mid A^{\prime}\right)=\frac{1}{4} \quad$ find:
a $\mathrm{P}(B) \quad$ b $\mathrm{P}\left(A \cap B^{\prime}\right)$
$\mathrm{P}(B \mid A)=\frac{\mathrm{P}(B \cap A)}{\mathrm{P}(A)} \quad$ so $\quad \mathrm{P}(B \cap A)=\mathrm{P}(B \mid A) \mathrm{P}(A)=\frac{1}{3} \times \frac{2}{5}=\frac{2}{15}$
Similarly, $\mathrm{P}\left(B \cap A^{\prime}\right)=\mathrm{P}\left(B \mid A^{\prime}\right) \mathrm{P}\left(A^{\prime}\right)=\frac{1}{4} \times \frac{3}{5}=\frac{3}{20}$
the Venn diagram is:

a $\mathrm{P}(B)=\frac{2}{15}+\frac{3}{20}=\frac{17}{60}$
b $\mathrm{P}\left(A \cap B^{\prime}\right)=\mathrm{P}(A)-\mathrm{P}(A \cap B)$ $=\frac{2}{5}-\frac{2}{15}$ $=\frac{4}{15}$

```
HW: 15K #1-8
    Practice: #13,15 (all)
```

