LIMITS

Limits - exploring a function as the variable approaches a value that might not be well defined.
$>\lim _{x \rightarrow a} f(x)$ is not the same as evaluating the function f at a. 16A
$>$ Notation and limits in the context of asymptotes 16B
> Evaluating limits requires special approaches and rules

- $\lim _{x \rightarrow a} c=c$
- $\lim _{x \rightarrow a} c f(x)=c \lim _{x \rightarrow a} f(x)$
- $\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$
- $\lim _{x \rightarrow a}[f(x) g(x)]=\lim _{x \rightarrow a} f(x) \times \lim _{x \rightarrow a} g(x)$
- $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} f(x) \div \lim _{x \rightarrow a} g(x)$ provided $\lim _{x \rightarrow a} g(x) \neq 0$.
a $\lim _{x \rightarrow 0} \frac{x^{2}-3 x}{x}$
b $\lim _{h \rightarrow 0} \frac{2 h^{2}+6 h}{h}$
c $\lim _{h \rightarrow 0} \frac{h^{3}-8 h}{h}$
6
-8
a $\lim _{x \rightarrow \infty} \frac{1}{x}$
b $\lim _{x \rightarrow \infty} \frac{3 x-2}{x+1}$
c $\lim _{x \rightarrow \infty} \frac{1-2 x}{3 x+2}$
3
$-2 / 3$

Limits arise when looking at functions with asymptotes (often these are rational functions). Consider $f(x)=\frac{2 x^{2}-18}{x^{2}-4 x-21}$

To explore asymptotes, factor as much as you can and cancel terms
$=\frac{2(x+3)(x-3)}{(x+3)(x-7)}=\frac{2(x-3)}{(x-7)}$ Note a problem at $x=7 . \quad$ Division by zero creates a vertical asymptote.
To define it precisely we need to look at the sign of f very close to but on either side of $x=7$.

When x is just $<7, f$ is big and negative (num is >0, denom is <0) so	$\lim _{x \rightarrow 7^{-}} f(x)=-\infty$
When x is just $>7, f$ is positive (num is >0, denom is >0) so	$\lim _{x \rightarrow 7^{+}} f(x)=+\infty$

Let's also look at what happens as x gets very large. You may recall that:
$>$ As x gets large, the highest power of x in a polynomial dominates the value of the function
In our case, the numerator and denominator are both linear. Thus, as x gets large, they both approach
infinity linearly and at the same rate. The - 3 and the -7 become irrelevant and we have essentially $\lim _{x \rightarrow+\infty} f(x)=\frac{2 \cdot+\infty}{+\infty}=2$ and similarly $\lim _{x \rightarrow-\infty} f(x)=\frac{2 \cdot-\infty}{-\infty}=2$

These two limits define a horizontal asymptote of the function.
Horizontal asymptotes in rational functions(may) occur as x approaches plus or minus infinity

Two other things to note while we're here
The zeros of a rational function are the values of x that make the numerator zero (assuming they do not cause an issue in the denominator).

In our case, $x=3$ is a zero.
Secondly: Notice that $x=-3$ is not a zero. Even though it makes the numerator zero, there is also an $x+3$ in the denominator. So there is a problem in the original function at $x=-3$ since it would result in $0 / 0$. It's called a hole at $x=-3$. Notice that after we cancelled the $(x+3)$, the problem is not apparent! $f(x)$ is not defined at $x=-3$. But we can say that

$$
\lim _{x \rightarrow-3} f(x)=\lim _{x \rightarrow-3} \frac{2(x+3)(x-3)}{(x+3)(x-7)}=\frac{(2)(-6)}{-10}=\frac{6}{5}
$$

It appears that we just plugged -3 into the reduced form which works in this case (but not always...)
We'll finish by looking at the graph of the function:

THE DERIVATIVE FUNCTION

Derivative - a function derived from another function that describes the original function's rate of change (aka slope, gradient) at any value of x.
$>$ What is the instantaneous rate of change (velocity) of a falling object t seconds after it is dropped? $\quad 16 \mathrm{C}$
> Approximations of slope using limits lead to $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \quad 17 \mathrm{~A}$
$>$ Derive derivative functions for powers, exponentials, $\operatorname{logs}, \sin , \cos , \tan$ and $1 / x$.

Powers -	17 C
Exponentials -	19 A
Ln \& $1 / \mathrm{x}-$	19 C
$\sin , \cos , \tan -$	20 A

> Properties of derivatives
c, $c f(x)$ and $f(x)+g(x)$
Chain rule 17D
Product rule 17E
Quotient rule 17F

> Second derivatives \& curvature	17 H
$>$ Applications	
\quad Tangents and Normals	17 G
Rate of change and others	Ch 18

SLCalcSketches.gsp

IB uses the word gradient interchangeably with slope. The gradient function is the derivative.
Newton's notation was $f(x)$
Leibniz used $\frac{d y}{d y}$ which clarifies the variable that we are deriving with respect to
Heavyside used $D_{x} f$ and you may also see $D f$

Summary of a Derivative
Consider a general function $y=f(x)$ where A is $(x, f(x))$ and B is $(x+h, f(x+h))$. $\begin{aligned} \text { The chord }[\mathrm{AB}] \text { has gradient } & =\frac{f(x+h)-f(x)}{x+h-x} \\ & =\frac{f(x+h)-f(x)}{h} . \end{aligned}$ If we now let B approach A, then the gradient of $[\mathrm{AB}]$ approaches the gradient of the tangent at A . So, the gradient of the tangent at the variable point $(x, f(x))$ is the limiting value of $\frac{f(x+h)-f(x)}{h}$ as h approaches 0 , or $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.

Derivatives of key functions

We can develop the derivative functions for various common functions from first principles by evaluating limits. Once we have done this, we memorize the result for the derivatives of these common functions. For
SL, you need to know the derivatives of the following functions:

Powers -	17 C
Exponentials -	19 A
Natural log -	19 C
sin, cos, tan -	20 A

Let's develop the derivative of power functions from first principles to remind you of that approach:

$$
\begin{aligned}
& \text { Given } f(x)=x^{n} \\
& \text { We want to find } f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& \text { Plug in the definition of } f=\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h} \\
& \begin{array}{r}
\text { Use the binomial expansion } \\
\text { to rewrite the numerator }
\end{array}=\lim _{h \rightarrow 0} \frac{x^{n}+\binom{n}{1} x^{n-1} h+\binom{n}{2} x^{n-2} h^{2}+\ldots\binom{n}{n-1} x h^{n-1}+h^{n}-x^{n}}{h} \\
& \text { The first and last term cancel }=\lim _{h \rightarrow 0} \frac{\binom{n}{1} x^{n-1} h+\binom{n}{2} x^{n-2} h^{2}+\ldots\binom{n}{n-1} x h^{n-1}+h^{n}}{h} \\
& \begin{array}{r}
\text { Cancel the common factor } h \\
\text { from top and bottom }
\end{array}=\lim _{h \rightarrow 0}\binom{n}{1} x^{n-1}+\binom{n}{2} x^{n-2} h+\ldots\binom{n}{n-1} x h^{n-1}+h^{n-1} \\
& \begin{array}{l}
\text { Now we can take the limit with no problem } \\
\text { Since } n \text { choose } 1 \text { is just } n \text { we have the result }
\end{array}=\binom{n}{1} x^{n-1}=n \cdot x^{n-1}
\end{aligned}
$$

Derivatives of key functions		
Name	$f(x)$	$f(x)$ or $\frac{d y}{d x}$
Constant Function	$f(x)=c$	$f(x)=0$
Power Function	$f(x)=x^{\mathrm{n}}$	$f(x)=n x^{\mathrm{n}-1}$
General Exponential Function	$f(x)=\mathrm{a}^{x}$	$f(x)=k \mathrm{a}^{x}$ where $k=f(0)$
Natural Exponential Function	$f(x)=\mathrm{e}^{x}$	$f(x)=\mathrm{e}^{x}$
Natural Log Function	$f(x)=\ln x$	$f(x)=\frac{1}{x}$
Sine Function	$f(x)=\sin x$	$f(x)=\cos x$
Cosine Function	$f(x)=\cos x$	$f(x)=-\sin x$
Tangent Function	$f(x)=\tan x$	$f(x)=\frac{1}{\cos ^{2} x}$

These are all on the formula sheet - don't sweat it

Differentiation rules

How do we take the derivative of a combination of functions?
First, consider the various ways to combine functions:

Add or subtract	$u(x)+v(x)$ or $u(x)-v(x)$
Multiply	$u(x) \cdot v(x)$
Divide	$\frac{u(x)}{v(x)}$
Compose	$(u \circ v)(x)$ or $u(v(x))$

A summary. These are proven from first principles in the book. It might be good to look through a couple.

Add or subtract	$f(x)=u(x) \pm v(x)$	$f^{\prime}(x)=u^{\prime}(x) \pm v^{\prime}(x)$	Addition Rule
Multiply	$f(x)=u(x) \cdot v(x)$	$f^{\prime}(x)=u^{\prime}(x) \cdot v(x)+u(x) \cdot v^{\prime}(x)$	Product Rule
Divide	$f(x)=\frac{u(x)}{v(x)}$	$f^{\prime}(x)=\frac{v(x) \cdot u^{\prime}(x)-u(x) \cdot v^{\prime}(x)}{v^{2}(x)}$	Quotient Rule
Compose	$f(x)=(u \circ v)(x)$ or $u(v(x))$	$f^{\prime}(x)=u^{\prime}(v(x)) \cdot v^{\prime}(x)$	Chain Rule

Here they are in another form. Notice the Leibniz notation for the Chain Rule below. Again, these are all in your Formula Sheet. Print it out and get to know it!

Function	Derivative	Name
c, a constant	0	
$m x+c, m$ and c are constants	m	
x^{n}	$n x^{n-1}$	power rule
$c u(x)$	$c u^{\prime}(x)$	
$u(x)+v(x)$	$u^{\prime}(x)+v^{\prime}(x)$	addition rule
$u(x) v(x)$	$u^{\prime}(x) v(x)+u(x) v^{\prime}(x)$	product rule
$\frac{u(x)}{x}$	$\frac{u^{\prime}(x) v(x)-u(x) v^{\prime}(x)}{[v(x)]^{2}}$	quotient rule
$\overline{v(x)}$	$[v(x)]^{2}$	quotient rule
$y=f(u) \quad$ where $\quad u=u(x)$	$\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$	chain rule
e^{x}	e^{x}	
$e^{f(x)}$	$e^{f(x)} f^{\prime}(x)$	
$\ln x$	$\frac{1}{x}$	
$\ln f(x)$	$\frac{f^{\prime}(x)}{f(x)}$	
$[f(x)]^{n}$	$n[f(x)]^{n-1} f^{\prime}(x)$	
$\sin x$	$\cos x$	
$\cos x$	$-\sin x$	
$\tan x$	$\frac{1}{\cos ^{2} x}$	

Second derivatives

If one takes the derivative of a derivative, we are finding the ... rate of change of ... the rate of change of the original function.

The second derivative may be written as $f^{\prime \prime}(x) \quad \frac{d^{2} y}{d x^{2}} \quad D_{x}^{2} f \quad D^{2} f$
Graphically, the second derivative represents the curvature of a function.
$f^{\prime}>0$ represents concave up
$f^{\prime}<0$ represents concave down
$f^{\prime}=0$ represents a point of inflection where the curvature may change
Physically, the second derivative represents the acceleration of something changing. $f^{\prime}>0$ represents increasing rate of change (often velocity)
$f^{\prime}<0$ represents decreasing rate of change (often velocity)
$f^{\prime}=0$ represents constant rate of change (often velocity)

Nothing special algebraically - just write neatly and keep track of things.

Applications of Derivatives

Three big ones
Finding minima and maxima of a curve (the derivative is zero!)
Finding the rate of change of some function at some point.
Finding the equation of a tangent or a normal line to a curve at some point.
We will explore them all through one problem. Focus on the process here, not the specifics

A baseball player hits a ball from 4 feet off the ground with an initial vertical velocity of 96 ft per sec at an angle of 45 degrees up from horizontal. The height in feet of the ball as a function of time, t in seconds after impact, can be modelled by the equation:

$$
h(t)=-16 t^{2}+92 t+4
$$

When does the ball reach it's peak?

$$
\begin{aligned}
& \qquad \begin{array}{l}
h \text { describes height as a function of time } h(t)=-16 t^{2}+96 t+4 \\
\text { The derivative of } h \text { with respect to } t \text { gives the rate of } \\
\text { change of the height of the ball. } \\
h^{\prime}(t)=-32 t+96
\end{array} \\
& \text { At it's peak, the ball is not changing height. For what } t \text { is } h^{\prime}(t)=0 \\
& \qquad \begin{array}{l}
t \text { has to satisfy } 0=-32 t+96 \\
\text { Solve for } t \quad t=\frac{96}{32}=3 \mathrm{sec}
\end{array} \\
& \hline \text { Local Extremes of a function occur at values of } x \text { where the first derivative is zero. }
\end{aligned}
$$

How fast is the ball moving vertically after 2 seconds?
The derivative of h with respect to t gives the $h^{\prime}(t)=-32 t+96$
rate of change (vertical speed) of the ball.
Just evaluate the derivative at $t=2$ seconds $h^{\prime}(2)=-32(2)+96$ Note that the ball is still moving up (positive velocity). $=32 \mathrm{ft} / \mathrm{sec}$

The derivative gives the rate of change of the function at any value of x.

How fast is the ball moving horizontally after $\mathbf{2}$ seconds?

This ties into vectors! Assuming no air resistance, the horizontal speed is constant and is defined at the moment of impact. Using some (simple in this case) trig we find the horizontal velocity is also $96 \mathrm{ft} / \mathrm{sec}$.

Pay attention to the variables $-x$ and t are different

How fast is the ball moving after 2 seconds?

Use the vector length
 $32 \mathrm{ft} / \mathrm{s}$ Pythagorean Theorem gives \qquad
$96 \mathrm{ff} / \mathrm{s}$

Bring in other ideas as needed

Find the equation of a line tangent to the ball's direction at $\mathbf{2}$ seconds.
To find the equation of a line we need a slope and a point!
The ratio of the vertical speed to the horizontal speed at $t=2$ gives us the slope of the tangent line. $m=\frac{32}{96}=\frac{1}{3}$
The position of the ball at 2 sec is given by $\left(96 t,-16 t^{2}+96 t+4\right)$
$\left(96(2),-16(2)^{2}+96(2)+4\right)=(192,132)$
The tangent line can be found using point-slope form: $h-132=1 / 3(x-192)$

$$
\text { or } h=1 / 3 x+68
$$

The value of the derivative at x is the slope of the line tangent to the curve at x.

Find the equation of a line normal to the ball's direction at $\mathbf{2}$ seconds.
We still need a slope and a point!

The normal line is perpendicular to the tangent line. Their slopes are opposite reciprocals. $m=-3$
The position of the ball at 2 sec is still $(192,132)$
The normal line can be found using point-slope form: $h-132=-3(x-192)$

$$
\text { or } h=-3 x+708
$$

Pay attention to words - normal and tangent are different but related.

Further work with derivatives

	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \end{aligned}$	Time rate of change General rates of change
	C	Motion in a straight line
	D	Some curve properties
	E	Rational functions
	F	Inflections and shape
	c	Optimisation
	A	Exponential e
	B	Natural logarithms
	C	Derivatives of logarithmic functions
	D	Applications
		Derivatives of trigonometric functions
Derivatives of trigonometric functions	B	Optimisation with trigonometry

Choose your review work as needed from these topics over the course of the next few weeks. There are 9 weeks (including Spring Break) before your exam.

I suggest the following plan for reviewing derivatives
Read through each section and look at the problem sets.
Choose $4-5$ problems per section - pick 2 easy, 3 hard. Do them completely. Do a couple more and/or get help if you find yourself struggling.
Set a goal of covering two sections per week between now and your exam. Pick a fixed day of the week to do a section.
Work with friends - but be sure that you are doing your own learning.

Key ideas by section:

AA\&B Rates of chang
The derivative of a function is it's rate of change or velocity
Velocity has direction:
is
Speed is the absolute value of velocity or $\left|f^{\prime}(x)\right|$. It is always positive.
The second derivative is it's acceleration.
Acceleration also has direction.
>0 is increasing (speeding up); <0 is decreasing (slowing down); $=0$ is constant
18C Motion along a straight line
The position, relative to the starting point is called displacement.
>0 is right; <0 is left
18D Properties of curvature
A curve that is always increasing or decreasing is called monotonic.
$>$ If $f^{\prime}(x)>0$ on an interval, the curve is monotonically increasing on the interval.
$>$ If $f^{\prime}(x)<0$ on an interval, the curve is monotonically decreasing on the interval.
$>$ Sign diagrams are a good way of characterizing a curve.
>SL only explores vertical asymptotes as dis
SL only explores vertical asymptotes as discontinuities
ue of a function cannot change sign except at a critical value
\rightarrow The value of a function does not always change sign at a critical value

8E Rational Functions (ratios of polynomials)

al
$>$ Examine the sign diagram near the asymptotes to find precise behavior
If esymptotes occur as follows:
$>$ No horizontal asymp > degree of the denominator
No horizontal asymptote. Function diverges
If degree of the numerator = degree of the denominator
$\quad>$ Horizontal asymptote at the ratio of the leading coefficients
> Horizontal asymptote at the ratio of the leading co
$>$ If degree of the numerator < degree of the denominator
$>$ Horizontal asymptote at zero
Zeros occur for values of x that make the numerator zero
18F Inflections and Shape
Second derivative measures curvature.
$>f^{\prime}(x)>0$ is concave up (smiling)
$>f^{\prime}(x)<0$ is concave down (frowning)
$>f^{\prime}(a)=0$ is a point of inflection at a iif the sign of f^{\prime} changes on either side of a
$>$ A stationary point of inflection also has $f(x)=0$ (horizontal slope)
18G Optimization
A local minimum or maximum must occur when $f(a)=0$
$>$ No all $f(a)=0$ result in local min or max
$>$ Sign must change on either side of the value a
$>$ Can also look at f^{\prime}
$>$ If $f(a)=0$ and $f^{\prime \prime}(a)>0, a$ is a local min
If $f^{\prime \prime}(a)=0$ and $f^{\prime \prime}(a)<0, a$ is a local max
If $f(a)=0$ and $f^{\prime \prime}(a)=0, a$ is a stationary point of inflection
$>$ Don't forget to look at the endpoints of an interval before choosing the min or max

Chapter 19 Derivatives of Exponentials and Logarithms
Derivative of e^{x} is itself
$>$ Derivative of $\ln x$ is $\frac{1}{x}$
$>$ Don't forget the chain rule!

Chapter 20 Derivatives of Trig Functions
Derivative of $\sin x$ is $\cos x$
\rightarrow Derivative of $\cos x$ is $-\sin x$
$>$ Derivative of $\tan x$ is $\frac{1}{\cos ^{2} x}$
$>$ Don't forget the chain rule
$>$ Unit circle, radian measure, and values of trig function for important angles
Various trig identities: (see Formula Sheet)
$\sin ^{2} x+\cos ^{2} x=1$
$>\sin 2 x=2 \sin x \cos x$
$>\sin (a+b)=\sin a \sin b+\cos a \cos b$
$>\cos (a+b)=\cos a \cos b-\sin a \sin b$
Integrals
$>$ Anti-der
$>$ Anti-derivatives
antiating with attention to chain rule
Particular case of composites with $\mathrm{ax}+\mathrm{b} \quad$ 21D
Einding the constant from a constant
Finding the constant from an initial condition or a known point
$>$ Definite integrals
Fundamental Theorem
SApplications Area under and between curves 22 Area interpretation as probability 2 A Area as distance $\quad 22 \mathrm{~B}$
Area as volume of water added, etc. Volumes of revolution 22 D
Elliot is cruising along a straight road at $90 \mathrm{ft} / \mathrm{sec}$ when his radar detector beeps. He him to get to the 20 mph speed limit $(30 \mathrm{ft} / \mathrm{sec})$? b) How far does he travel in that time?
a) $30=-20 t+90 t=3$ seconds
b) We need a function that describes position as a function of time. Recall that velocity is the derivative of position. So first we want to find a function whose derivative is $v(t)=-20 t+90$
The antiderivative of a function $f(x)$ is that function whose derivative is $f(x)$.
The antiderivative of f is written as F with the property that $F(x)=f(x)$
We find antiderivatives by
) integration (we will look differentiation or
ome examples:

1. Solve the following antidervative questions. In other words, find F, g, and S $\begin{array}{lll}\text { (a) } F^{\prime}(x)=4 x^{3} & \text { (b) } g^{\prime}(t)=10 \cos (5 t) & \text { (c) } \frac{d S}{d u}=\frac{1}{2} e^{u}+\frac{1}{2} e^{-}\end{array}$
B THE FUNDAMENTAL OREM OF CALCULUS
Back to our question. We found that the position of the object is given by: $s(t)=-10 t^{2}+90 t+c$
Since Elliot has not backtracked at all, we can find the distance travelled by looking at his position at $t=0$ and his position at $t=3$

$$
s(0)=-10(0)^{2}+90(0)+c=c \quad s(3)=-10(3)^{2}+90(3)+c=180+c
$$

If we take the difference, we have the distance travelled
(3) - $s(0)=180+c-c=180$ feet
Let's look at this visually \qquad
If $f(x)$ is a continuous positive function on an interval
$a \leqslant x \leqslant b$ then the area under the curve between $x=a$
and $x=b$ is $\int_{a}^{b} f(x) d x$.
One can calculate these areas by using infinite summations of rectangles or trapezoid but it is rather complex. We will state (without proving) a very important result:

The Fundamental Theorem of Calculus (Part I)
For a continuous function $f(x)$ with antiderivative $F(x), \int_{a}^{b} f(x) d x=F(b)-F(a)$.

In other words instead of evaluating an infinite sum using limits, we can simply evaluate the difference of the antiderivative of the function evaluated at the two endpoints of the interval.

This is a huge simplification! From this theorem, other properties can be proven:

- $\int_{a}^{a} f(x) d x=0$	- $\int_{a}^{b} c d x=c(b-a)$
- $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$	- is a constant $\}$
- $\int_{a}^{b} f f(x) d x+\int_{b}^{b} f(x) d x=\int_{a}^{c} f(x) d x$	
- $\int_{a}^{b}[f(x) \pm g(x)] d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$	

Understanding that integrals are areas under a curve helps you remember these.
Let's try a couple

included 21 CL .2 in "tonight's" HW , due 1

C			INTEC
We have been looking at inding the area under a curve over a spediici interval. But the Fundamental Theorem of Calculus is more powertu than that. We can use it to relate a function and its antidefivative, even if there is no specifici intevalu under consideration. The Fundamental Theorem implies that:			
if $F^{\prime}(x)=f(x)$ then $\int f(x) d x=F(x)+c$.			
In words, the indefinite integralof a function is given by the antiderivative of the function plus some constant of integration. The function $f(x)$ is called theintegrand.			
Example: Consider the function $f(x)=x^{2}$			
The antiderivative of this function is $F(x)=\frac{x^{3}}{3}+c \quad$ since it's derivative gi			
We write this as the integralof f or $\int x^{2} d x=\frac{x^{2}}{3}+c$			
Notice that the same rules apply as for definite integrals, except that there is always a constant of integration. Another example.			
Find $\int\left(2 x^{2}-4 x+5\right) d x$			
$=\int 2 x^{2} d x-\int 4 x d x+\int 5 d x$			
$=2 \int x^{2} d x-4 \int x d x+\int 5 d x$			
$=\left(2 \frac{x^{3}}{3}+c_{1}\right)-\left(4 \frac{x^{2}}{2}+c_{2}\right)+\left(5 x+c_{3}\right)$			
$=\frac{2 x^{3}}{3}-2 x^{2}+5 x+c$			
Check your work! If you differentiate your result, you should get the integrand!			
$\operatorname{Try} \int \frac{18 x-6}{3 x^{2}-2 x+4} d x$			
Notice the reciprocal and recall that:		$\frac{d(\ln x)}{d x}=\frac{1}{x}$	
So we take a look at:		$\frac{d \ln \left(3 x^{2}-2 x+4\right)}{\alpha x}=$	$\frac{6 x-2}{3 x^{2}-2 x+4}$
This result is a third of what we need. So if we multiply by 3 , we get $\quad F(x)=3 \ln \left(3 x^{2}-2 x+4\right)+c$			

$\begin{aligned} & \text { This result is t third of what we need. } \\ & \text { So f we multiply by } 3 \text {, we get }\end{aligned} \quad F(x)=3 \ln \left(3 x^{2}-2 x+4\right)+c$

Fiunction	Integral
k, a constant	$k x+c$
x^{n}	$\frac{x^{n+1}}{n+1}+c, n \neq-1$
e^{x}	$e^{x}+c$
$\frac{1}{x}$	$\ln x+c, x>0$
$\cos x$	$\sin x+c$
$\sin x$	$-\cos x+c$

Ways differentiate y our result to see that you get the original integrand.

Integrate with respect to x. a $2 \sin x-\cos x$	- $-\frac{2}{x}+3 e^{2}$
$\begin{aligned} & a \int[2 \sin x-\cos x] d x \\ &=2(-\cos x)-\sin x+c \\ &=-2 \cos x-\sin x+c \end{aligned}$	$\begin{aligned} & \text { b } \quad \int\left[-\frac{2}{x}+3 e^{e}\right] d x \\ & =-2 \ln x+3 e^{e}+c \text { provided } x>0 \end{aligned}$

Find: - $\int\left(3 x+\frac{2}{x}\right)^{2} d x$	b $\int\left(\frac{x^{2}-2}{\sqrt{x}}\right) d x$
$\int\left(3 x+\frac{2}{x}\right)$	f
$-\int\left(9 x^{2}+12+\frac{4}{x^{2}}\right) d x$	$=\int\left(\frac{x^{2}}{\sqrt{x}}-\frac{2}{\sqrt{x}}\right) d$
$-\int\left(9 x^{2}+12+4 x^{-2}\right) d x$	$=\int\left(x^{4}-2 x^{\left.-\frac{4}{4}\right)} d x\right.$
$-\frac{9 x^{3}}{3}+12 x+\frac{4 x^{-1}}{-1}+c$	
$=3 x^{3}+12 x-\frac{4}{x}+c$	$=\frac{3}{5} x^{2} \sqrt{x}-4 \sqrt{x}+c$

pand parentheses and simpliy lo geta form you can int
When you know any speciic point on the curve that results from the integration, vou can
ind the constant of integration.
Find $f(x)$ given that $f^{\prime}(x)=x^{3}-2 x^{2}+3$ and $f(0)=2$.
Since $f^{\prime}(x)=x^{3}-2 x^{2}+3$,
$f(x)=\int\left(x^{3}-2 x^{2}+3\right) d x$
$(x)=\int\left(x^{2}-2 x^{3}\right.$
$\therefore f(x)=\frac{x^{4}}{4}-\frac{2 x^{3}}{3}+3 x+c$
But $f(0)=2$, so $\quad 0-0+0+c=2$ und so $c=2$
Thus $f(x)=\frac{x^{4}}{4}-\frac{2 x^{3}}{3}+3 x+2$
We may be given a second derivative.f". To find the original function, integrate twice.
You will need a point onf to be specific on the second integration.
Find $f(x)$ given that $f^{\prime \prime}(x)=12 x^{2}-4, f^{\prime}(0)=-1$ and $f(1)=4$.
If $f^{\prime \prime}(x)=12 r^{2}-4$
then $f^{\prime}(x)=\frac{12 x^{3}}{3}-4 x+c \quad$ \{inegrating with respect to x)
$f^{\prime}(x)=\frac{12 x^{3}}{3}-4 x+c$
But $f^{\prime}(x)=4 x^{3}-4 x+c \quad$ so $0-0+c=-1$ and so $c=-1$
But $f^{\prime}(0)=-1$ so 0
Thus $f^{\prime}(x)=4 x^{3}-4 x-1$
$\therefore f(x)=\frac{4 x^{4}}{4}-\frac{4 x^{2}}{2}-x+d \quad$ \{integraing again)
$f(x)=x^{4}-2 x^{2}-x+d$
But $f(1)=4$ so $1-2-1+d-4$ and so $d=6$
Thus $f(x)=x^{4}-2 x^{2}-x+6$

INTEGRATING $\boldsymbol{f}(\boldsymbol{a x}+\boldsymbol{b})$

This is a basic extension of integrating $f(x)$. Notice that the derivative of $a x+b$ is just a. So when we integrate a function of $a x+b$, we will need to divide by a. This is a consequence of the chain rule.

Apart from noticing this situation, there is nothing new here.

Function	Integral
$e^{a x+b}$	$\frac{1}{a} e^{a x+b}+c$
$(a x+b)^{n}$	$\frac{1}{a} \frac{(a x+b)^{n+1}}{n+1}+c, \quad n \neq-1$
$\frac{1}{a x+b}$	$\frac{1}{a} \ln (a x+b)+c, \quad a x+b>0$
$\cos (a x+b)$	$\frac{1}{a} \sin (a x+b)+c$
$\sin (a x+b)$	$-\frac{1}{a} \cos (a x+b)+c$

E DEFINITE INTEGRALS

This section is practice calculating definite integrals on your calculator. The main idea is that you can find a definite integral of any function that you can enter into your calculator, even if you could never find it manually.

The section also includes some problems that remind you that interpreting an integral as area requires that you remember that area under the x-axis is considered negative.

Evaluate the following integrals using area interpretation:
a $\int_{0}^{3} f(x) d x$
b $\int_{3}^{7} f(x) d x$
c $\int_{2}^{4} f(x) d x$
d $\int_{0}^{7} f(x) d x$

[^0]

HW Guidance:
A. 1 \#1cd, 2dhl, 3, 4abc (do completely) Other problems

Sketch each graph on your calculator. Write each integral correctly, including limits. Evaluate any integrals that are unfamiliar
A. 2 \#1aceg, $3,4,10$-16 all (do completely)

Other problems
Sketch the graphs, find relevant intersections. Write out the integrals completely, careful with signs
Evaluate any integrals that are unfamiliar

B
 MOTION PROBLEMS

The area under a velocity vs. time graph represents distance traveled.

Also, recall that the derivative of velocity is acceleration. Thus, the area under an acceleration curve from $t=\mathrm{a}$ to $t=\mathrm{b}$ represents the change in velocity from $t=\mathrm{a}$ to $t=\mathrm{b}$. More generally, the velocity function can be found by integrating the acceleration function.

```
A particle P moves in a straight linc with velocity function v(t)=\mp@subsup{t}{}{2}-3t+2\mp@subsup{\textrm{m s}}{}{-1}}\mathrm{ .
a How far does P travel in the first 4 seconds in motion?
b Find the displacement of P ffter 4 seconds.
a }\begin{array}{rl}{v(t)=\mp@subsup{s}{}{\prime}(t)}&{=\mp@subsup{t}{}{2}-3t+2}\\{}&{=(t-1)(t-2)}\end{array}\quad\therefore\mathrm{ sign diagram of v is: }\underset{0}{\stackrel{+}{+}
        Since the signs change, P reverses direction at t=1 and t=2 seconds
        Now s(t)=\int(\mp@subsup{t}{}{2}-3t+2)dt=\frac{\mp@subsup{t}{}{3}}{3}-\frac{3\mp@subsup{t}{}{2}}{2}+2t+c
        Now }s(0)=c,\quads(1)=\frac{1}{3}-\frac{3}{2}+2+c=c+\frac{5}{6
            s(2) = 8
        Motion diagram: }\underset{c}{\longrightarrow
        total distance = (c+\frac{5}{6}-c)+(c+\frac{5}{6}-[c+\frac{2}{3}])+(c+5\frac{1}{3}-[c+\frac{2}{3}])
                = 5
                = 5\frac{2}{3}\textrm{m}
b Displacement = final position - original position
            =s(4)-s(0)
            =c+5\frac{1}{3}
            = =5\frac{1}{3}\textrm{m}
        So, the displacement is }5\frac{1}{3}\textrm{m}\mathrm{ to the righ.
```


PROBLEM SOLVING BY INTEGRATION

Some other applications of integration. For a continuously changing phenomenon, the amount of change is the integral of it's rate of change over the time period in question.

A marginal cost is a cost that changes with the number of items.

```
The marginal cost of producing }x\mathrm{ urns per week is given b
C'(x)=2.15-0.02x+0.00036\mp@subsup{x}{}{2}\mathrm{ dollars per urn provided 0}\leqslantx\leqslant120
The initial costs before production starts are $185. Find the total cost of producing 100
urns per day
The marginal cost is }\mp@subsup{C}{}{\prime}(x)=2.15-0.02x+0.00036\mp@subsup{x}{}{2}\mathrm{ dollars per uri
                C(x)=\int(2.15-0.02x+0.00036\mp@subsup{x}{}{2})dx
    C(x)=2.15x-0.02\frac{\mp@subsup{x}{}{2}}{2}+0.00036\frac{\mp@subsup{x}{}{3}}{3}+c
        =2.15x-0.01\mp@subsup{x}{}{2}+0.000 12\mp@subsup{x}{}{3}+c
    But C(0)=185, so c=185
        C(x)=2.15x-0.01\mp@subsup{x}{}{2}+0.000 12\mp@subsup{x}{}{3}+185
    C(100) =2.15(100)-0.01(100) 2+0.00012(100) 3}+18
        =420 So, the total cost is $420
```


HW	22 B. 1	$\# 1-3$
	$22 B .2$	$\# 1-7$
	22 C	$\# 1-4$

D SOLIDS OF REVOLUTION

A common application of integration is to find volumes. In particular, the volume created when
rotating a known curve around an axis is well suited to integration.

Aconcepto understand (not a formula to memorize.)
$V=\lim _{h \rightarrow 0} \sum_{x=a}^{m=b} \pi[f(x)]^{2} h=\int_{a}^{b} \pi[f(x)]^{2} d x=\pi \int_{a}^{b} y^{2} d x$

Do not memorize this! Understand what it means and set up each situation as needed.

HW	22D.1		
22D.2		\quad	\#1bdfh,2,3b,4,5,6,8,9
:---			
\#1-6			

[^0]: HW 21D \#1begh,2beh,3,4,5bcef,6cfi,7bc,8-13
 21E. 1 1col2,2
 21E. 2 \#2-10 even \& 9

