

INDEX LAWS

Using your understanding of exponents, write down an equivalent power for each product.

$$
3^{2} \cdot 3^{2}=3 \cdot 3 \cdot 3 \cdot 3=3^{4}
$$

$3^{2} \cdot 3^{3}=3 \cdot 3 \cdot 3 \cdot 3 \cdot 3=3^{5}$
$3^{2} \cdot 3^{4}=3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3=3^{6}$
Pattern?
Product of power: $\begin{aligned} & a^{m} \cdot a^{n}=a^{m+n} \\ & \text { Try } 5^{2} \cdot 5^{4} \\ & -2(-2)^{4}\end{aligned} \quad x^{2} \cdot x^{3}$

Using your understanding of exponents, write down an equivalent power for each power.
$\left(3^{2}\right)^{2}=3^{2} \cdot 3^{2}=3 \cdot 3 \cdot 3 \cdot 3=3^{4}$
$\left(3^{2}\right)^{3}=3^{2} \cdot 3^{2} \cdot 3^{2}=3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 3=3^{6}$
Pattern?
Power of power: $\left(a^{m}\right)^{n}=a^{m n}$
Try $\left(4^{2}\right)^{4}$
$\left[(-3)^{5}\right]$

Using your understanding of exponents, write down an equivalent power for each power.
$(3 \cdot 4)^{2}=3 \cdot 4 \cdot 3 \cdot 4=3 \cdot 3 \cdot 4 \cdot 4=3^{2} 4^{2}$
$(3 \cdot 4)^{3}=3 \cdot 4 \cdot 3 \cdot 4 \cdot 3 \cdot 4=3 \cdot 3 \cdot 3 \cdot 4 \cdot 4 \cdot 4=3^{3} 4^{3}$
Pattern?
$\begin{array}{lll}\text { Power of product: }(\mathbf{a b})^{n}= & \mathbf{a}^{n} \mathbf{b}^{n} \\ \text { Try }(-3 \cdot 4)^{2} & (2 x)^{2} & \left(-3 x^{2} y\right)^{3}\end{array}$
Can your understanding of exponents help you evaluate 2^{-4})

$2_{-1}^{5} \mid+1+1 \cdot \mathbf{1} \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{2} \cdot \mathbf{2}=32 \quad \mathbf{a}^{n}$ means multiply 1 by a, n times		
$2^{4}=1 \cdot 2 \cdot 2 \cdot 2 \cdot 2=16$		
${ }_{-1} \\|+1 \times 2 \cdot 2 / /-2$		
$2^{3}=1 \cdot 2 \cdot 2 \cdot 2=8$		
$-1 / \div 2$		
$2^{2}=1 \cdot 2 \cdot 2=4$		
-1 $/ \div 2$		
$2^{1}=1 \cdot 2=2$		
$2^{0}=1=1 / \div 2$ Zero Exponent Property: $\mathbf{a}^{0}=1$ for all $\mathrm{a} \neq 0$		
-1		
$2_{-1}^{-1}=\frac{1}{2}=\frac{1}{2}$		
$2^{-2}=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{2^{2}}=\frac{1}{4}$		
${ }_{-1}{ }^{-1}$		
$2^{-3}=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{2^{3}}=\frac{1}{8}$		
${ }_{-1} \mid=\overline{2} \cdot \overline{2} \cdot \overline{2}=\overline{2^{3}}=\overline{8}$		
$2^{-n}=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \quad \cdot \frac{1}{2}=\frac{1}{2}$	$\underline{1}=\frac{1}{2}$	
$2^{-n}=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \ldots \cdot \frac{1}{2}=\frac{1}{2^{n}}$	$\frac{1}{2}=\frac{1}{2^{n}} \quad a^{-n}$ means divide 1 by a, n times	

Negative Exponent Property: $\mathbf{a}^{-n}=\frac{1}{\mathbf{a}^{n}}=\left(\frac{1}{a}\right)^{n}$
This implies another useful form:
$\mathbf{a}^{n}=\frac{1}{\mathbf{a}^{-n}}=\left(\frac{1}{a}\right)^{-n}$
Try: $(2 x)^{-3} \quad 2 x y^{-2} \quad 2(x y)^{-2} \quad \frac{1}{(2 x)^{-3}} \quad \frac{1}{2 x^{-3}} \quad\left(\frac{3}{4}\right)^{-n}$
Using your understanding of exponents, write down an equivalent power for each quotient.
$\frac{3^{5}}{3^{5}}=\frac{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}=1$
$\frac{3^{5}}{3^{3}}=\frac{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}{3 \cdot 3 \cdot 3}=3 \cdot 3=3^{2}$
$\frac{3^{5}}{3^{2}}=\frac{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}{3 \cdot 3}=3 \cdot 3 \cdot 3=3^{3}$
Pattern?
Quotient of powers: $\frac{a^{m}}{a^{n}}=a^{m-n} ; \quad a \neq 0$
Try: $\frac{5^{17}}{5^{12}} \quad \frac{-4^{7}}{-4^{12}} \quad \frac{x^{5}}{x^{3}} \quad \frac{x^{5} y^{7}}{x^{7} y^{5}}$

Using your understanding of exponents, write down an equivalent power for each power.
$\left(\frac{3}{4}\right)^{5}=\frac{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}{4 \cdot 4 \cdot 4 \cdot 4 \cdot 4}=\frac{3^{5}}{4^{5}}$
$\left(\frac{4}{7}\right)^{3}=\frac{4 \cdot 4 \cdot 4}{7 \cdot 7 \cdot 7}=\frac{4^{3}}{7^{3}}$
Pattern?
Power of a quotient: $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}} ; \quad b \neq 0$
Try: $\left(\frac{3}{4}\right)^{3} \quad\left(\frac{\mathrm{x}}{\mathrm{y}}\right)^{5} \quad\left(\frac{2 x}{3 y}\right)^{-4}\left(\frac{3 x^{2}}{5 y^{-3}}\right)^{-2}$

There are a lot of useful properties. Do not memorize them! Understand them!
Properties of Exponents
Let a and b be real numbers and m and n be integers. Then:
Product of Powers Property $\quad \mathbf{a}^{m} \cdot \mathbf{a}^{n}=\mathbf{a}^{m+n}$
Power of a Power Property $\quad\left(a^{m}\right)^{n}=a^{m n}$
Power of a Product Property $\quad(a b)^{m}=\mathbf{a}^{m} \mathbf{b}^{m}$
Negative Exponent Property $\quad a^{-m} \quad=\frac{1}{a^{m}}=\left(\frac{1}{a}\right)^{m}, a \neq 0$
Zero Exponent Property $\quad a^{0} \quad=1, a \neq 0$
Quotient of Powers Property $\quad \frac{a^{m}}{a^{n}} \quad=a^{m-n}, a \neq 0$
Power of a Quotient Property $\quad\left(\frac{a}{b}\right)^{m}=\left(\frac{a^{m}}{b^{m}}\right), b \neq 0$

For now, we will restrict ourselves to integer exponents. More on that next time...
This takes practice...

Simplify using the index laws:
Write without negative indices:
a $5^{4} \times 5^{7} \quad$ b $d^{2} \times d^{6}$
a $a b^{-2}$
b $(a b)^{-2}$
g $\frac{p^{3}}{p^{7}} \quad$ h $n^{3} \times n^{9}$
Write as powers of 2:
f $\frac{a^{2} b^{-1}}{c^{-2}}$
g $\frac{1}{a^{-3}}$
Write in non-fractional form:
a $\frac{1}{a^{n}} \quad$ b $\frac{1}{b^{-n}}$
Write without brackets:
a $(2 a)^{2} \quad$ b $(3 b)^{3}$
f $\left(\frac{a}{3}\right)^{3} \quad$ g $\left(\frac{b}{c}\right)^{4}$
Write the following in simplest form, without brackets:
a $(-2 a)^{2}$
b $\left(-6 b^{2}\right)^{2}$
c $(-2 a)^{3}$
e $\left(-2 a b^{4}\right)^{4}$

$$
\text { e }\left(-2 a b^{4}\right)^{\frac{2}{2}}
$$

f $\left(\frac{-2 a^{2}}{b^{2}}\right)^{3}$
g $\left(\frac{-4 a^{3}}{b}\right)^{2}$

$$
{ }^{9}(\bar{b})
$$

a $\left(\frac{5}{3}\right)^{0}$
b $\left(\frac{7}{4}\right)^{-1}$

$$
\text { c }\left(\frac{1}{6}\right)^{-1}
$$

c $\left(\frac{1}{6}\right)^{-1}$
e $\left(\frac{4}{3}\right)^{-2}$
f $2^{1}+2^{-1}$
s $\left(1 \frac{2}{3}\right)^{-3}$
Write as powers of 2,3 and/or 5 :
a $\frac{1}{9}$
b $\frac{1}{16}$
c $\frac{1}{125}$
e $\frac{4}{27}$
f $\frac{2^{c}}{8 \times 9}$
g $\frac{9^{k}}{10}$

> HW: 3C \#1ijk,3ijk,4deij,7cdgh,8deij,9de,10cdgh,11cdgh (Hint: It may be faster (and will certainly be better for you) to just do them all rather than looking at the above to see which ones are required!)

Some practice

Exponent Properties			
oi	$5^{3} \cdot 5^{4}$	$x^{2} \cdot x \cdot x^{5}$	$-4 x^{3} \cdot 3 x^{5}$
	$\left(3^{2}\right)^{3}$	$\left(-x^{3}\right)^{4}$	$-2\left(3^{2}\right)^{2}$
	$\left(2 x^{4}\right)^{5}$	$\left(-4 n^{3}\right)^{2}$	$3\left(4 k^{5}\right)^{3}$
	$3 x\left(-x \cdot x^{2}\right)^{3}$	$2 x^{3} \cdot(-3 x)^{2}$	$\left(a b c^{2}\right)^{3} \cdot a b$
	$\left(\frac{3}{4}\right)^{2}$	$\left(\frac{1}{x^{-3}}\right)^{2}$	$\left(\frac{m^{2}}{n}\right)^{3}$
$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0.0 \\ \end{array}\right\|$	$5^{-3} \cdot 5^{4}$	$2^{0} \cdot 2^{-3}$	$n^{-2}(m n)^{2}$
	$a^{5} b^{-8}$	$a^{6}\left(a^{3}\right)^{-2}$	$4 x^{-3} y^{2} z^{-5}$
	$3 y^{3} x^{-4}$	$\left(6 x^{-3}\right)^{3}$	$\left(3^{-3}\right)^{2}$
	$(2 x)^{-3}$	$2 x(y z)^{-2}$	$-2 x(-y z)^{-2}$
	$\frac{3}{c^{5}}$	$\frac{1}{4}$	$\frac{1}{(-6)^{-3}}$
	$\frac{4}{x^{-3}}$	$\frac{2 y^{-2}}{x^{3}}$	$\frac{5 y^{2}}{x^{-5}}$
	$\left(\frac{3}{4}\right)^{-2}$	$\left(\frac{1}{x^{-3}}\right)^{-2}$	$\left(\frac{m^{2}}{n}\right)^{-3}$

	$\frac{6^{5}}{6^{3}}$	$\frac{(-5)^{9}}{(-5)^{4}}$	$\frac{(-t)^{4}}{-t}$
$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{訁} \\ & \stackrel{\rightharpoonup}{\partial} \\ & \hline \end{aligned}\right.$	$\frac{4^{5}}{4^{-2}}$	$\frac{(-3)^{-3}}{(-3)^{-6}}$	$\frac{n^{-4}}{n^{5}}$
$\begin{array}{\|l\|l\|} \stackrel{\text { x }}{0} \\ \stackrel{y y}{2} \end{array}$	$\frac{x^{5}}{x^{2}}$	$\frac{16 x^{3} y^{2}}{24 x^{2} y^{5}}$	$\frac{4 x^{3}}{y^{2}} \cdot \frac{2 y^{5}}{x^{5}}$
-	$\frac{16 r^{5} s^{9}}{-2 r s^{2}} \cdot \frac{r^{2} s}{-8}$	$\frac{4 a^{-1} b^{3}}{a^{4} b^{-2}} \cdot\left(\frac{3 a}{a b}\right)^{-2}$	$\frac{-6 m^{3} n^{-2}}{5 m^{-3} n^{4}} \cdot \frac{15 m^{2} n}{-2 n^{3}}$
	$5^{-2} \cdot 5^{2}$	$\left(5^{-2}\right)^{-2}$	x^{-5}
	$3^{-4} \cdot 3^{7}$	$4^{7} \cdot 4^{5}$	$x^{5} \cdot x^{-1}$
	$\left(\frac{3}{4}\right)^{-2}$	$\left(\frac{1}{n}\right)^{-3}$	$\left(-\frac{5}{16}\right)^{0}$
	$2 x^{-3}$	$4 t^{-1}$	$-7 n^{-4}$
$\left\lvert\, \begin{gathered} \text { 㦴 } \\ \hline \end{gathered}\right.$	$\frac{1}{6^{3}}$	$\frac{12}{y^{4}}$	$\frac{-1}{x^{8}}$
흘	10^{-3}	10^{-5}	10^{-1}
$>$	$10^{-2} \cdot 10^{8}$	$10^{-1} \cdot 10^{6}$	$10^{5} \cdot 10^{2}$
	$(-2)^{2} \cdot(-2)^{3}$	$(-4)^{7} \cdot(-4)^{-5}$	$(-15)^{7} \cdot(-15)^{4}$
	$\left(\frac{3}{4}\right)^{2} \cdot\left(\frac{3}{4}\right)^{4}$	$\left(\frac{4}{n}\right)^{3} \cdot\left(\frac{4}{n}\right)^{5}$	$\left(-\frac{2}{3}\right)^{5} \cdot\left(-\frac{2}{3}\right)^{6}$
		$5 x^{5} \cdot 9 x^{4}$	$-2 x^{-4} \cdot 8 x^{3}$

We have discussed integer exponents. Considering the properties that we have developed, what must a fractional exponent represent? Consider, for example, the exponent of one half.
The product of powers property can help. It implies that $a^{\frac{1}{2}} \cdot a^{\frac{1}{2}}=a^{\left(\frac{1}{2}+\frac{1}{2}\right)}=a^{1}=a$
But the number that multiplies by itself to get a already has a name: $\sqrt{\text { a }}$

So... $a^{\frac{1}{2}}=\sqrt{a} \quad$ and in general $a^{\frac{1}{n}}=\sqrt[n]{a}$ which is the nth root of a.

The properties that we have developed imply some other interesting things:
What happens if we cube the square root of $16 ? \quad(\sqrt{16})^{3}=(4)^{3}=64$

What happens if we take the square root of 16 cubed? $\sqrt{16^{3}}=\sqrt{4096}=64$
Let's look at that using exponents:
$\left(16^{\frac{1}{2}}\right)^{3}=16^{\frac{3}{2}}$ means the (square root of 16) cubed...or the square root of (16 cubed)

In general,

Some practice: Write as single powers

$$
\frac{1}{\sqrt[4]{27}} \quad \frac{1}{\sqrt[5]{2}} \quad 4^{-\frac{1}{2}} \quad 8^{\frac{5}{3}} \quad \sqrt[4]{3} \quad(\sqrt{2})^{3}
$$

Try a couple on your calculator:

$$
4^{-\frac{3}{5}} \quad 2^{\frac{7}{8}}
$$

Warm up: Simplify the expressions.

$\sqrt[3]{16} \cdot \sqrt[3]{4} 4$	$\left(y^{4}\right)^{1 / 6} r^{2 / 3}$
$\sqrt[3]{108} \cdot \sqrt[3]{4} 6 \sqrt[3]{2}$	$\frac{\sqrt{3}}{\sqrt{75}} \frac{1}{5}$
$\sqrt{\frac{20 x^{3} y^{2}}{9 x z^{3}}} \quad \frac{2 x y \sqrt{5 z}}{3 z^{2}}$	$\left(\frac{7^{3}}{4^{3}}\right)^{-1 / 3} \frac{4}{7}$
$(\sqrt[3]{-64})^{4} 256$	$\frac{-3}{\sqrt[5]{x^{6}}} \frac{-3 \sqrt[5]{x^{4}}}{x^{2}}$

Simplify the expressions.

$$
\begin{aligned}
& \left(6^{2 / 3}\right)^{1 / 2} 6^{1 / 3} \\
& \left(16^{5 / 9} \cdot 5^{7 / 9}\right)^{-3} \quad \frac{\sqrt[3]{50}}{16000} \\
& \frac{13^{3 / 7}}{13^{5 / 7}} \frac{\sqrt[7]{371,293}}{13} \\
& 2 \sqrt[6]{3}+7 \sqrt[6]{3} 9 \sqrt[6]{3} \\
& 6 \sqrt[3]{5}+4 \sqrt[3]{625} 26 \sqrt[3]{5}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt[3]{\frac{x^{15}}{y^{6}}} \frac{x^{5}}{\gamma^{2}} \\
& \frac{x^{2 / 5} y}{x y^{-1 / 3}} \frac{y^{4 / 3}}{x^{3 / 5}} \\
& \frac{\sqrt[4]{36} \cdot \sqrt[4]{9}}{\sqrt[4]{4}} 3 \\
& \sqrt[4]{12 x^{2} y^{6} z^{12}} \quad y z^{3} \sqrt[4]{12 x^{2} y^{2}} \\
& \left(x^{4} y\right)^{1 / 2}+\left(x y^{1 / 4}\right)^{2} 2 x^{2} y^{1 / 2}
\end{aligned}
$$

ALGEBRAIC EXPANSION AND FACTORISATION

Remember algebra? Let's review a very important idea: Multiplying binomials $(a+b)(c+d)$

Various ways to remember it:
FOIL
$(x+5)(x+3)$
Happy Man
Rainbow
Paperboy
Grid

Try a few:
$(x-6)(x+2)$
$(3 x-8)(2 x+5)$
$(2 x-3 y)(x-4 y)$

There are also some special patterns that you need to know to work quickly and efficiently. Understand where these come from and then memorize them.

$$
\begin{aligned}
(a+b)(a-b) & =a^{2}-b^{2} \\
(a+b)^{2} & =a^{2}+2 a b+b^{2} \\
(a-b)^{2} & =a^{2}-2 a b+b^{2}
\end{aligned}
$$

$(x-6)(x-6)$
$(x+4)^{2}$
$(x-7)^{2}$

In this context, it's all about doing the operations correctly:

$\left(2^{x}+1\right)\left(2^{x}+3\right)$	$2^{2 x}+4 \cdot 2^{x}+3$
$\left(2^{x}+3\right)\left(2^{x}-3\right)$	$2^{2 x}-9$
$\left(3^{x}-1\right)^{2}$	$3^{2 x}-6^{x}+1$
$\left(x^{\frac{1}{2}}+2\right)\left(x^{\frac{1}{2}}-2\right)$	$x-4$
$\left(7^{x}-7^{-x}\right)^{2}$	$7^{2 x}-2+7^{-2 x}$
$\left(x+\frac{2}{x}\right)^{2}$	$x^{2}+4+\frac{4}{x^{2}}$

Also know how to deal with different situations:
$x^{2}\left(x^{3}+2 x^{2}+1\right) \quad x^{5}+2 x^{4}+x^{2}$
$3^{x}\left(2-3^{-x}\right) \quad 2 \cdot 3^{x}-1$
$5^{-x}\left(5^{2 x}+5^{x}\right) \quad 5^{x}+1$
Practice is critical! Work thoroughly, make no move without absolutely knowing why. Also, be aware that next up is going in the other direction (aka factorisation). So watch the patterns.

HW is not a lot of practice. Do more problems until you are getting them correct the first time-1 minute per problem maximum!

EXPONENTIAL EQUATIONS

Exponential functions often occur in equations that we need/want to solve.
Suppose you invest $\$ 100$ at an annual interest rate of 5% compounded annually. How many years will it take for your investment to reach $\$ 200$.

Remember the equation? $u_{\mathrm{n}+1}=u_{1}(1+r)^{n}$
In this case we start with $\$ 100$ and want to end up with $\$ 200$. So we're looking at

$$
200=100(1+0.05)^{n} \text { or } 2=1.05^{n}
$$

We've seen this a little bit before. In general, we need to use logs. But we'll save that for the next chapter. Meanwhile, notice that there are some forms of exponential equations that we can solve without using logs. Suppose, for example, that we wanted to solve the equation $8=2^{n}$

Because this can be written as $2^{3}=2^{n}$ we can mathematically support what we know to be true

Equating Exponents
If you can rewrite an exponential equation to have powers of the same base on either side, you can equate the exponents to solve the equation.

Try a few

Solve for $x:$	a $2^{x}=16$	b $\quad 3^{x+2}=\frac{1}{27}$	
a $\quad 2^{x}$	$=16$	b $\quad 3^{x+2}$	$=\frac{1}{27}$
$\therefore \quad 2^{x}$	$=2^{4}$	$\therefore \quad 3^{x+2}$	$=3^{-3}$
$\therefore \quad x$	$=4$	$\therefore \quad x+2$	$=-3$
		$\therefore \quad x$	$=-5$

Another idea: Notice the quadratic form. Factor and then find each zero.

$$
\text { Solve for } x: \quad 4^{x}+2^{x}-20=0
$$

$$
\begin{aligned}
4^{x}+2^{x}-20 & =0 & & \\
\left(2^{x}\right)^{2}+2^{x}-20 & =0 & & \left\{\text { compare } a^{2}+a-20=0\right\} \\
\left(2^{x}-4\right)\left(2^{x}+5\right) & =0 & & \left\{\text { as } a^{2}+a-20=(a-4)(a\right. \\
\therefore \quad 2^{x} & =4 \text { or } 2^{x}=-5 & & \\
\therefore \quad 2^{x} & =2^{2} & & \left\{2^{x} \text { cannot be negative }\right\} \\
\therefore \quad x & =2 & &
\end{aligned}
$$

A few more. Notice how you can manipulate things. You're looking for:
> One term on each side
$>$ The same base on each side (rewrite the bases)
> Expressions in the exponents that you can set equal to each other
> Also look for quadratic forms

$$
\begin{array}{llll}
\begin{array}{l}
\text { Solve for } x \text { : } \\
\text { a } 2^{x}=8
\end{array} & \text { a } x=3 & \begin{array}{l}
\text { Solve for } x: \\
\text { a } 4^{2 x+1}=8^{1-x}
\end{array} & \text { a } x=\frac{1}{7} \\
\text { e } 3^{x}=\frac{1}{3} & \text { e } x=-1 & \text { Solve for } x: & \\
\text { i } 2^{x-2}=\frac{1}{32} & \text { i } x=-3 & \begin{array}{lll}
\text { a } 3 \times 2^{x}=24 & \text { a } x=3 \\
\text { Solve for } x: & & \text { d } 12 \times 3^{-x}=\frac{4}{3}
\end{array} & \text { d } x=2 \\
\text { a } 8^{x}=32 & \text { a } x=\frac{5}{3} & \text { Solve for } x: & \\
\text { e } 27^{x}=\frac{1}{9} & \text { e } x=-\frac{2}{3} & \begin{array}{l}
\text { a } 4^{x}-6\left(2^{x}\right)+8=0 \\
\text { i } 4^{4 x-1}=\frac{1}{2}
\end{array} & \text { i } x=\frac{1}{8} \\
\text { a } x=1 \text { or } 2 \\
\text { m } 81^{x}=27^{-x} & \text { m } x=0 & & \text { d } x=3^{x}+6
\end{array}
$$

This is the minimum homework. Do enough to become proficient.
HW 3F: 1dhi,2dhlp,3c,4cf,5cf

GRAPHS OF EXPONENTIAL FUNCTIONS

Graphs help us to visualize relationships (functions). What does an exponential look like? Start with a table of values:

x	$y=2^{x}$
0	1
1	2
2	4
-1	$1 / 2$
-2	$1 / 4$

Notice that the function can never reach zero. It has an asymptote at $y=0$.
What is the range of the function?
$\{y \mid y>0\}$
What is the affect of changing the base?
How about the parameter a ?
GSP Demo

The general exponential has four parameters that control its shape:
For the general exponential function $y=a \times b^{x-c}+d$

- b controls how steeply the graph increases or decreases
- c controls horizontal translation
- d controls vertical translation and $y=d$ is the equation of the horizontal asymptote.
- if $a>0, b>1$ the function is increasing.

- if $a<0, b>1$ the function is decreasing.
- if $a>0,0<b<1$
- if $a>0,0<b<1$
the function is decreasing.
- if $a<0,0<b<1$ the function is increasing.

。
o

Understanding this, we can graph exponential functions.
To graph:
$>$ Plot the y-intercept
$>$ Plot two other points ($x=1$ and $x=-1$ are usually easy)
$>$ Know the general shape and connect

To find the function from a graph is not so easy because there are so many possibilities.

HW 3G: 1bdf,2all,4-6

H
 GROWTH AND DECAY

Imagine that 100 rabbits are dropped onto an island and they immediately start reproducing at the rate of 50% per year. Can you write a function that gives the population of rabbits at some number of years n after the initial drop off? Can you graph the function?

This phenomenon can be modeled by a geometric sequence because the number of rabbits in year n is a constant multiple (1.5) of the number of rabbits in the previous year. (Assume no rabbits die!)

Recall from our work with geometric sequences that the number of rabbits born in year $n+1$ is: $u_{n+1}=u_{1}(1+r)^{n}$
where is common form of this formula uses 0 as the first index and is written as: $u_{\mathrm{n}}=u_{0}(1+r)^{\mathrm{n}}$

So the function that describes the population after the $n^{\text {th }}$ year is: $P(n)=100(1.5)^{n}$
Let's look at the graph of this function:

Wow - This is the equivalent of 3 child families (assuming no deaths, of course!) But you get the picture. More realistic: World population growth rate is approximately 1.17% per year:

Here's the same data in another view. What does it communicate?
World Population

Consider this context:

So ask yourself why some understanding of math is important..

Exponential functions also describe decay. A common example is radioactive decay where, for example, a radioactive substance deteriorates (decays) at a rate of 5% per year. Now we have a "growth multiplier" $(1+r)$ that is less than 1 . It's really $(1-r)$.
 The amount of the substance after n years is given by: $W_{n}=W_{0}(0.95)^{n}$
 Suppose we started with 50 grams. We can ask questions such as:

> How much is present after 10 years?
$>$ When will the amount left be less than 10 grams? (technology will be helpful here)

Radioactive materials are often described by their half-life. This is the amount of time it takes to reach half the initial weight. Given that some material has a half life of 1000 years, what is the annual rate of decay?

The exponent is not always an integer number like n. Let's look at some examples:

```
The weight of radioactive material remaining after t years is given by
W}=\mp@subsup{W}{0}{}\times\mp@subsup{2}{}{-0.001t}\mathrm{ grams.
    a Find the original weight.
    b Find the percentage remaining after 200 years.
    a When }t=0,\mp@subsup{W}{0}{}=\mp@subsup{W}{0}{}\times\mp@subsup{2}{}{0}=\mp@subsup{W}{0}{
        W0}\mathrm{ is the original weight
    b When t}=200,\quad\mp@subsup{W}{200}{}=\mp@subsup{W}{0}{}\times\mp@subsup{2}{}{-0.001\times200
                =W0}\times\mp@subsup{W}{}{-0.2
                \approxW}\mp@subsup{W}{0}{}\times0.870
                        \approx87.06% of W0 . }\mp@subsup{W}{0}{
```

SNowmobile The value of a snowmobile has been decreasing by 7\% each year since it was new. After 3 years, the value is $\$ 3000$. Find the original cost of the snowmobile.
\$3,729.69

THE NATURAL EXPONENTIAL ' e '

Let's go back to compound interest again. You will recall that the formula for the amount of money in the bank after t years if you invest P dollars at an annual interest rate of r, compounded annually is
given by:

$$
A=P(1+r)^{t} \text { compounded annually }
$$

If you compound, say, quarterly, you will be paid 4 times as often but the interest rate you receive each quarter is only a fourth of the annual interest rate. Thus, the formula becomes:

$$
A=P\left(1+\frac{r}{4}\right)^{4 t} \text { compounded quarterly }
$$

If you compound monthly, there are 12 periods. So the formula becomes:

$$
A=P\left(1+\frac{r}{12}\right)^{12 t} \text { compounded monthly }
$$

A question arises: what if you compounded "continuously" meaning that we let the number of periods in year get larger and larger - on to infinity! Let's look and see if there's a pattern. To do this, we need to generalize our equation first. Let's use n to represent the number of compoundings. Then we have:

$$
A=P\left(1+\frac{r}{n}\right)^{n t} \text { compounded } n \text { times/year }
$$

To explore this, let's make a substitution $a=\frac{n}{r}$. Show algebraically that $A=P\left[\left(1+\frac{1}{a}\right)^{a}\right]^{r t}$
This is nice because I can explore the factor in square brackets. Notice that as n gets larger and larger, so does a (it's just n divided by a constant). So let's see what happens as a gets large.

a	$\left(1+\frac{1}{a}\right)^{a}$
1	2
10	2.593742
100	2.704814
1000	2.716924
10000	2.718146
100000	2.718268
1000000	2.71828
10000000	2.718282
100000000	2.718282

This number is the natural number called " \boldsymbol{e} " after Leonhard Euler who discovered it. It shows up in nature in many strange and interesting ways.
It also is the sum of $1+\frac{1}{2}+\frac{1}{2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\frac{1}{2 \cdot 3 \cdot 4 \cdot 5} \ldots$

