## Algebra and Functions

Algebra-8 hours
Sequences and series
Exponentials and logarithms
Binomial theorem (if time)
Functions - 24 hours
Concepts
Graphs
Transformations
Graphs and equations of function families
Linear
Quadratic (and other polynomial)
Reciprocal
Exponential
Logarithmic
See syllabus for details
Finish just before Easter
End the year with Trig

A RELATIONS AND FUNCTIONS
Relation: Pairs of items that are related in a predictable way
Example: You have $\$ 100$ in a bank account. You make a deposit or withdrawal. There is a relation between the balance in the bank and the transaction.

Relations have an "input" and an "output"

| Input <br> (Transaction) | Output <br> (Balance) |
| :---: | :---: |
| 20 | 120 |
| -10 | 90 |
| 30 | 130 |
| -75 | 25 |


$(20,120),(-10,90),(30,130),(-75,25)$


The set of all possible "inputs" is called the "Domain" of the relation.

The set of all possible "outputs" is called the "Range" of the relation.

$$
\begin{aligned}
y & =100+x \\
f(x) & =100+x \\
f: x & \mapsto 2 x+5
\end{aligned}
$$

Notation: If $f(x)=100+x$, then $f(2)=100+2=102$
Think of a "function" machine that performs some operation:


The output value is sometimes called the image of $x$.

A function is a relation that has exactly one output for every input.


Is this a function?


Are these functions?
$(5,6),(4,5),(3,6),(2,5)$
$(1,6),(2,5),(1,4),(5,5)$
Determining whether a relation is a function is easy from a graph:


Vertical Line Test: If a vertical line passes through the graph of a relation exactly once for all $x$ in its domain, then the relation is a function in that domain.

## DOMAIN AND RANGE

Domain: The set of all possible values of the input $(x)$ to a relation.
Range: The set of all possible values of the output $(y)$ of a relation.
Notation:
Open circle means exclude the point.
Solid circle means include the point.
$\{x \mid x \in \mathbb{R}\} \quad\{x \mid x>2\} \quad\{x \mid 0 \leq x \leq 12\} \quad\{y \mid y<-6$ or $y \geq 6\} \quad\{y \mid y \in\{2,3,4\}\}$


Domain: $\{x \mid-1<x \leq 5\}$
Range : $\{y \mid 1<y \leq 3\}$


Domain: $\{x \mid x \neq 2\}$
Range : $\{y \mid y \neq-1\}$


Domain : $\{x \mid x \in \mathbb{R}\}$
Range : $\{y \mid y \geq-1\}$


Domain: $\{x \mid x \in \mathbb{R}\}$
Range : $\left\{y \left\lvert\, y \leq 6 \frac{1}{4}\right.\right\}$

## D

## COMPOSITE FUNCTIONS



The composite of two functions is created by using the output of one function as the input to the other function. Some properties:
$(f \circ g)(x)$ is not the same as $(g \circ f)(x)$ in general
The range of the first function in a composition is the domain of the second.
Try: Given $f(x)=x^{2}+7$ and $g(x)=2 x+4$ find $(f \circ g)(x)$ and $(g \circ f)(x)$

$$
(f \circ g)(x)=(2 x+4)^{2}+7 \quad(g \circ f)(x)=2\left(x^{2}+7\right)+4
$$

## SIGN DIAGRAMS

Sometimes it's helpful to visualize a function. Short of creating a full graph of it, one can create a sign diagram showing just the sign of the function over its domain.


The horizontal line represents the $x$-axis

The critical values are written below the horizontal line. They are the $x$-intercepts and vertical asymptotes of the function.

The sign of the function (+ or -) is written between critical values above the horizontal line.

Notice that the sign does not always change between critical values.
Factoring (writing as a product) is a very helpful tool in creating sign diagrams because if any factor is zero, then the whole expression is zero!

Notice how vertical asymptotes are represented. A vertical asymptote will occur at any value of $x$ that causes the function to divide by zero.
Draw a sign diagram for:

$$
\begin{aligned}
& (3 x+2)(4-x) \quad 2 x^{2}+9 x-5 \quad \frac{(2 x+3)(x-5)}{(x-4)(x+5)} \\
& (2 x-1)(x+5)
\end{aligned}
$$

1E: 1cfil,2cfilo,3cfi,4cfil

## THE RECIPROCAL FUNCTION

The function $f(x)=\frac{1}{x}$ is called the Reciprocal Function.


## ASYMPTOTES OF OTHER RATIONAL FUNCTIONS

It generates a whole family of functions that are known as Rational Functions because they are written as ratios.

They often have vertical asymptotes: at values of $x$ where the denominator is zero.

They may also have zeros or roots: at values of $x$ where the numerator is zero.

They may also have horizontal asymptotes:
a $y$ value that the function approaches as $x$ gets very large or small.
Consider the function $\frac{(2 x+3)}{(x-5)}$
Vertical asymptote at ?
Horizontal asymptote at ?


Notation:
Horizontal asymptotes
as $x \rightarrow \infty, y \rightarrow 2$ from above or $y \rightarrow 2^{+}$
as $x \rightarrow-\infty, y \rightarrow 2$ from below or $y \rightarrow 2^{-}$

Vertical asymptotes
as $x \rightarrow 5$ from the left, $y \rightarrow \infty$ or as $x \rightarrow 5^{-}, y \rightarrow \infty$
as $x \rightarrow 5$ from the right, $y \rightarrow \infty$ or as $x \rightarrow 5^{+}, y \rightarrow \infty$

| 1F: | $1-2$ |
| :--- | :--- |
| 1G: | 1 all |

## INVERSE FUNCTIONS

What is the inverse of

| addition?  <br> subtraction? multiplication?$\quad$exponentiation? <br> division? | taking roots? |
| :--- | :--- | :--- |

Inverses undo an operation.

## An inverse function undoes the operation of a forward function.

Example:
$f(x)=3 x+2$ multiplies $x$ by 3 , then adds two
The inverse function, called $f^{-1}(x)$ has to subtract 2 then divide by 3
so $f^{-1}(x)=\frac{x-2}{3}$
Some properties of inverse functions:
The inverse of $f(x)$ must itself be a function (satisfies vertical line test)
The inverse of $f(x)$ is the reflection of $f(x)$ over the line $y=x$ !

$$
f^{-1} \circ f=f \circ f^{-1}=x
$$

> The domain of $f^{1}$ is the range of $f$ The domain of $f$ is the range of $f^{1}$

A self-inverse function is it's own inverse!
Any function that is symmetric around $y=x$ is a self-inverse.

## Finding inverse functions

Graphically
Graph the reflection over $y=x$
Algebraically
Switch the $x$ and $y$, then solve for $y$.

Example:

$$
y=\frac{1}{4} e^{2 x}+2
$$


$f(x)=y=\frac{1}{4} e^{2 x}+2$ so switch $x$ and $y$ to begin:
$x=\frac{1}{4} e^{2 y}+2$
$x-2=\frac{1}{4} e^{2 y}$
$4(x-2)=e^{2 y}$
$\ln (4(x-2))=2 y$
$\frac{1}{2} \ln (4(x-2))=y$
1H: $2,4,5,6,7,8,10,11,12,14$
or $f^{-1}(x)=\frac{1}{2} \ln (4(x-2))$

