Final Exam Prep – Practice Problems 1. Consider the arithmetic sequence 2, 5, 8, 11, (a) Find u_{101} . (b) Find the value of <i>n</i> so that $u_n = 152$. (Total 6 mark)	
(a) Find u_{101} . (b) Find the value of <i>n</i> so that $u_n = 152$. (3)	
(b) Find the value of <i>n</i> so that $u_n = 152$.	a
	,
(Total 6 mar)	(3)
2. Consider the infinite geometric sequence $3000, -1800, 1080, -648, \dots$	(S)
(a) Find the common ratio.	
	(2)
(b) Find the 10 th term.	(2)
(c) Find the exact sum of the infinite sequence.	
(Total 6 mark	(2) (s)
3. Find the term in x^3 in the expansion of $\left(\frac{2}{3}x-3\right)^8$.	-~)
4. Consider the infinite geometric sequence 3, $3(0.9)$, $3(0.9)^2$, $3(0.9)^3$,	(S)
 (a) Write down the 10th term of the sequence. Do not simplify your answer. 	
	(1)
(b) Find the sum of the infinite sequence.	(4)
(Total 5 marl	
5. (a) Expand $(x-2)^4$ and simplify your result.	(3)
(b) Find the term in x^3 in $(3x + 4)(x - 2)^4$.	
	(3)
6. Let $f(x) = \ln (x + 5) + \ln 2$, for $x > -5$. (Total 6 mark	(S)
(a) Find $f^{-1}(x)$.	
	(4)
Let $g(x) = e^x$. (b) Find $(g \circ f)(x)$, giving your answer in the form $ax + b$, where $a, b \in \mathbb{Z}$.	
	(3)
7. Let $f(x) = 3(x + 1)^2 - 12$. (Total 7 mark	(S)
(a) Show that $f(x) = 3x^2 + 6x - 9$.	
	(2)
 (b) For the graph of <i>f</i> (i) write down the coordinates of the vertex; 	
(i) write down the coordinates of the vertex,(ii) write down the equation of the axis of symmetry;	
(iii) write down the y-intercept;	
(iv) find both <i>x</i> -intercepts.	(8)
(c) Hence sketch the graph of f .	
(d) Let $g(x) = x^2$. The graph of f may be obtained from the graph of g by the two transformations:	(2)
(d) Let $g(x) = x$. The graph of f had be obtained from the graph of g by the two transformations: a stretch of scale factor t in the y-direction	
followed by a translation of $\begin{pmatrix} p \\ q \end{pmatrix}$.	
Find $\begin{pmatrix} p \\ q \end{pmatrix}$ and the value of t.	(3)
(Total 15 marl	(s)
C:\Documents and Settings\Bob\My Documents\Dropbox\Desert\SL\SL1FinalExam.doc on 05/14/2012 at 10:17 PM 1 of 1	0

8. Consider
$$f(x) = \sqrt{x-5}$$
.

(a) Find

- (i) *f*(11);
- (ii) *f*(86);
- (iii) f(5).
- (b) Find the values of x for which f is undefined.

(c) Let
$$g(x) = x^2$$
. Find $(g \circ f)(x)$.

(3)

(2)

(2) (Total 7 marks)

(3)

9. The quadratic function *f* is defined by
$$f(x) = 3x^2 - 12x + 11$$
.
(a) Write *f* in the form $f(x) = 3(x - h)^2 - k$.

(b) The graph of *f* is translated 3 units in the positive *x*-direction and 5 units in the positive *y*-direction. Find the function *g* for the translated graph, giving your answer in the form $g(x) = 3(x-p)^2 + q$.

(3) (Total 6 marks)

10. Let
$$M = \begin{pmatrix} 2 & -1 \\ -3 & 4 \end{pmatrix}$$
, and $O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Given that $M^2 - 6M + kI = O$, find k.
(Total 6 marks)

11.	Let	$f(x) = 2x^2 - 12x + 5.$	(10tal 0 mai ks)
	(a)	Express $f(x)$ in the form $f(x) = 2(x - h)^2 - k$.	
	(b)	Write down the vertex of the graph of <i>f</i> .	(3)
	(0)	while down the vertex of the graph of <i>j</i> .	(2)
	(c)	Write down the equation of the axis of symmetry of the graph of f .	(1)
	(d)	Find the <i>y</i> -intercept of the graph of <i>f</i> .	(1)
			(2)
	(e)	The <i>x</i> -intercepts of <i>f</i> can be written as $\frac{p \pm \sqrt{q}}{r}$, where $p, q, r \in \mathbb{Z}$.	
		Find the value of p , of q , and of r .	_
			(7) (Total 15 marks)
12.	Let	$f(x) = \frac{1}{x}, x \neq 0.$	
	(a)	Sketch the graph of f .	(2)
	The	graph of <i>f</i> is transformed to the graph of <i>g</i> by a translation of $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$.	
	(b)	Find an expression for $g(x)$.	
	(c)	 (i) Find the intercepts of g. (ii) Write down the equations of the asymptotes of g. (iii) Sketch the graph of g. 	(2)
			(10) (Total 14 marks)

(a) On the grid below, sketch the graph of f.

Alei - Desert Academy 2011-12

(2)

(2)

- (2)
- (2)
- The functions f and g are defined by $f: x \mapsto 3x, g: x \mapsto x + 2$. (Total 6 marks)
- (a) Find an expression for $(f \circ g)(x)$.
 - (b) Find $f^{-1}(18) + g^{-1}(18)$.

(b)

(c)

14.

(4) (Total 6 marks)

15. The following diagram shows part of the graph of *f*, where $f(x) = x^2 - x - 2$.

Write down the equation of each vertical asymptote.

Write down the range of the function *f*.

- (a) Find both *x*-intercepts.
- (b) Find the *x*-coordinate of the vertex.

(4)

(2) (Total 6 marks)

		sert Academy 2011-1
	an arithmetic sequence $u_{21} = -37$ and $u_4 = -3$.	
(a)		
	(i) the common difference;(ii) the first term.	
	(ii) the first term.	(
(b)	Find <i>S</i> ₁₀ .	~
		(
- - - -		(Total 7 mark
	$t u_n = 3 - 2n.$	
(a)	Write down the value of u_1 , u_2 , and u_3 .	(.
	20	(.
(b)	Find $\sum_{n=1}^{20} (3-2n)$.	
	n=1	l'
		() Total 6 mark)
3. Sol	lve the following equations.	(100010100
(a)		
		(.
(b)	$\log_2 8 = x$	
	1	(2
(c)	$\log_{25} x = -\frac{1}{2}$	
	2	(3
(d)	$\log_2 x + \log_2(x - 7) = 3$,
		(!
9. At	heatre has 20 rows of seats. There are 15 seats in the first row, 17 seats in the second	(Total 13 mark
	ch successive row of seats has two more seats in it than the previous row.	TOW, and
(a)		
		(4
(b)	Calculate the total number of seats.	
		() (Total 6 mark)
		(10tur 0 murk
). As	sum of \$ 5000 is invested at a compound interest rate of 6.3 % per annum.	
(a)		
		(
(b)	What will be the value of the investment at the end of five years?	
(a)	The value of the investment will exceed $(10,000)$ often a full vector	(
(c)	The value of the investment will exceed \$ 10 000 after <i>n</i> full years.(i) Write down an inequality to represent this information.	
	(i) White down an inequality to represent this information.(ii) Calculate the minimum value of <i>n</i>.	
		(
		(Total 6 mark

21. Part of the graph of a function *f* is shown in the diagram below.

- (i) Find g(-3).
- (ii) Describe **fully** the transformation that maps the graph of f to the graph of g.

(4) (Total 6 marks)

(3)

22. Let $f(x) = 3x - e^{x-2} - 4$, for $-1 \le x \le 5$.

(b)

(a) Find the *x*-intercepts of the graph of *f*.

On the grid below, sketch the graph of *f*.

- у, 3 2 1 -2 0 2 3 4 5 6 -1 - -1 -2 -3 _4 -5 -6 -7 -8 -9 -10
- (c) Write down the gradient of the graph of f at x = 2.

(3)

5 of 10

23. A city is concerned about pollution, and decides to look at the number of people using taxis. At the end of the year 2000, there were 280 taxis in the city. After n years the number of taxis, T, in the city is given by

$$T = 280 \times 1.12^n.$$

- (a) (i) Find the number of taxis in the city at the end of 2005.
 - (ii) Find the year in which the number of taxis is double the number of taxis there were at the end of 2000.
- (b) At the end of 2000 there were 25 600 people in the city who used taxis. After n years the number of people, P, in the city who used taxis is given by

$$P = \frac{2560\,000}{10 + 90\mathrm{e}^{-0.1n}}$$

- (i) Find the value of *P* at the end of 2005, giving your answer to the nearest whole number.
- (ii) After seven complete years, will the value of *P* be double its value at the end of 2000? Justify your answer.
- (c) Let *R* be the ratio of the number of people using taxis in the city to the number of taxis. The city will reduce the number of taxis if R < 70.
 - (i) Find the value of *R* at the end of 2000.
 - (ii) After how many complete years will the city first reduce the number of taxis?

(5) (Total 17 marks)

(6)

(6)

24. Let *f* be the function given by $f(x) = e^{0.5x}$, $0 \le x \le 3.5$. The diagram shows the graph of *f*.

- (a) On the same diagram, sketch the graph of f^{-1} . (3)
- (b) Write down the range of f^{-1} .
- (c) Find $f^{-1}(x)$.

(3)

(1)

(Total 7 marks)

Alei - Desert Academy 2011-12

25. [Note: Trig Functions will not be included on the final exam. But transformations of functions will be. Do this problem only if you want to explore transformations more thoroughly.] Let $f(t) = a \cos b (t - c) + d$, $t \ge 0$. Part of the graph of y = f(t) is given below.

When t = 3, there is a maximum value of 29, at M.

- When t = 9, there is a minimum value of 15.
- Find the value of *a*. (a) (i)
 - Show that $b = \frac{\pi}{6}$. (ii)
 - Find the value of *d*. (iii)
 - (iv) Write down a value for *c*.

The transformation P is given by a horizontal stretch of a scale factor of $\frac{1}{2}$, followed by a translation

of
$$\begin{pmatrix} 3 \\ -10 \end{pmatrix}$$
.

Let M' be the image of M under P. Find the coordinates of M'. (b)

The graph of g is the image of the graph of f under P.

Find g(t) in the form $g(t) = 7 \cos B(t - C) + D$. (c)

(d) Give a full geometric description of the transformation that maps the graph of g to the graph of f.

(Total 16 marks) Let $f(x) = 2x^2 + 4x - 6$. 26. Express f(x) in the form $f(x) = 2(x - h)^2 + k$. (a)

- (b) Write down the equation of the axis of symmetry of the graph of f. (1)
- Express f(x) in the form f(x) = 2(x p)(x q). (c)

(2) (Total 6 marks)

(7)

(2)

(4)

(3)

(3)

- 27. Let $f(x) = x \cos(x - \sin x), 0 \le x \le 3$.
 - Sketch the graph of *f* on the following set of axes. (a)

(3)

(3)

(4)

(3)

(Total 13 marks)

(b) The graph of f intersects the x-axis when x = a, $a \neq 0$. Write down the value of a.

(1) (Total 4 marks)

28. Consider the points A (1, 5, 4), B (3, 1, 2) and D (3, k, 2), with (AD) perpendicular to (AB). (a) Find

- (i) \overrightarrow{AB} ;
- (ii) \overrightarrow{AD} , giving your answer in terms of k.

(b) Show that
$$k = 7$$
. (3)

The point C is such that $\overrightarrow{BC} = \frac{1}{2} \overrightarrow{AD}$.

(c) Find the position vector of C.

- 29. Let v = 3i + 4j + k and w = i + 2j 3k. The vector v + pw is perpendicular to w. Find the value of p. (Total 7 marks)
- **30.** The point O has coordinates (0, 0, 0), point A has coordinates (1, -2, 3) and point B has coordinates (-3, 4, 2).

(a) (i) Show that
$$\overrightarrow{AB} = \begin{pmatrix} -4 \\ 6 \\ -1 \end{pmatrix}$$

(b) The line
$$L_1$$
 has equation $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -3 \\ 4 \\ 2 \end{pmatrix} + s \begin{pmatrix} -4 \\ 6 \\ -1 \end{pmatrix}$.

Write down the coordinates of two points on L_1 .

- (c) The line L_2 passes through A and is parallel to OB.
 - (i) Find a vector equation for L_2 , giving your answer in the form r = a + tb.
 - (ii) Point C (k, -k, 5) is on L_2 . Find the coordinates of C.

8 of 10

(8)

Alei - Desert Academy 2011-12

(4)

(2)

(d) The line
$$L_3$$
 has equation $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ -8 \\ 0 \end{pmatrix} + p \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}$, and passes through the point C.

Find the value of *p* at C.

(2) (Total 18 marks)

31. The line
$$L_1$$
 is represented by $\mathbf{r}_1 = \begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix} + s \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ and the line L_2 by $\mathbf{r}_2 = \begin{pmatrix} 3 \\ -3 \\ 8 \end{pmatrix} + t \begin{pmatrix} -1 \\ 3 \\ -4 \end{pmatrix}$.

The lines L_1 and L_2 intersect at point T. Find the coordinates of T.

- (Total 6 marks)
 32. A particle is moving with a constant velocity along line *L*. Its initial position is A(6, -2, 10). After one second the particle has moved to B(9, -6, 15).
 - (a) (i) Find the velocity vector, \overrightarrow{AB} .
 - (ii) Find the speed of the particle.
 - (b) Write down an equation of the line *L*.
- 33. Let $A = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$ and $B = \begin{pmatrix} 3 & 0 \\ -2 & 1 \end{pmatrix}$. Find (a) A + B; (b) -3A; (c) AB. (Total 6 marks) (2) (2)

34. Let $M = \begin{pmatrix} 2 & 1 \\ 2 & -1 \end{pmatrix}$. (a) Write down the determinant of M. (1)

(b) Write down
$$M^{-1}$$
. (2)

(c) Hence solve
$$M\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}4\\8\end{pmatrix}$$
.

(3) (Total 6 marks)

35.	Let $\boldsymbol{A} = \begin{pmatrix} 1 & -2 \\ 3 & p \end{pmatrix}$ and $\boldsymbol{B} = \begin{pmatrix} -2 & 1 \\ q & \frac{1}{2} \end{pmatrix}$.
	(a) Find AB in terms of p and q .

(b) Matrix **B** is the inverse of matrix **A**. Find the value of p and of q.

(2)

(5)

36. Let
$$A = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 1 & 1 \\ 0 & 2 & -2 \end{pmatrix}$$
.
(a) Write down A^{-1} . (2)

The matrix **B** satisfies the equation $\left(I - \frac{1}{2}B\right)^{-1} = A$, where **I** is the 3 × 3 identity matrix.

- (b) (i) Show that $B = -2(A^{-1} I)$.
 - (ii) Find **B**.
 - (iii) Write down det **B**.
 - (iv) **Hence**, explain why B^{-1} exists.

Let
$$BX = C$$
, where $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ and $C = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$.

(c) (i) Find X.

(ii) Write down a system of equations whose solution is represented by *X*.

(5) (Total 13 marks)

(6)

Final Exam Prep – Practice Problems: MarkScheme

1.	(a)	<i>d</i> = 3	(A1)		
		evidence of substitution into $u_n = a + (n - 1) d$ e.g. $u_{101} = 2 + 100 \times 3$		(M1)	
		$u_{101} = 302$		A1	
				N3	
	(b)	correct approach		(M1)	
		<i>e.g.</i> $152 = 2 + (n - 1) \times 3$ correct simplification		(A1)	
		<i>e.g.</i> $150 = (n - 1) \times 3$, $50 = n - 1$, $152 = -1 + 3n$		(111)	
		<i>n</i> = 51		A1	
				N2	[7]
2.	(a)	evidence of dividing two terms	(M1)		[6]
	(u)		(111)		
		$e.g\frac{1800}{3000}, -\frac{1800}{1080}$			
		r = -0.6		A1	
				N2	
	(b)	evidence of substituting into the formula for the 10^{th} term e.g. $u_{10} = 3000(-0.6)^9$		(M1)	
		$u_{10} = -30.2$ (accept the exact value -30.233088)		A1	
				N2	
	(c)	evidence of substituting into the formula for the infinite sum 3000		(M1)	
		$e.g. S = \frac{3000}{1.6}$			
		S = 1875		A1	
				N2	
3.	ovide	nce of using binomial expansion		(M1)	[6]
Ј.				(1411)	
	<i>e.g.</i> s	electing correct term, $a^8b^0 + \binom{8}{1}a^7b + \binom{8}{2}a^6b^2 + \dots$			
		nce of calculating the factors, in any order		A1A1A1	
	e.g. 5	6, $\frac{2^3}{3^3}$, -3^5 , $\binom{8}{5} \left(\frac{2}{3}x\right)^3 (-3)^5$			
	-403	$2x^3$ (accept = $-4030x^3$ to 3 s.f.)		A1	
				N2	
				2.74	[5]
4.		$u_{10} = 3(0.9)^9$	A1	N1	
	(b)	recognizing $r = 0.9$ correct substitution		(A1) A1	
		$e.g. S = \frac{3}{1 - 0.9}$			
		$S = \frac{3}{0.1}$		(A1)	
		S = 30		A1	
				N3	
5.	(a)	evidence of expanding	M1		[5]
	(4)	<i>e.g.</i> $(x-2)^4 = x^4 + 4x^3(-2) + 6x^2(-2)^2 + 4x(-2)^3 + (-2)^4$.,,,,		
C:\Do	cuments	and Settings\Bob\My Documents\Dropbox\Desert\SL\SL1FinalExam.doc on 05/14/20	12 at 10:1'	7 PM	1 of 16
		· · · · · · · · · · · · · · · · · · ·			

IB M	lath – Si	tandard Level Year 1 – Final Exam Practice - MarkScheme	Alei - Desert Academy 2	2011-12
		$(x-2)^4 = x^4 - 8x^3 + 24x^2 - 32x + 16$	A2 N2	
	(b)	finding coefficients, 3×24 (= 72), $4 \times (-8)(=-32)$	(A1)(A1)	
	(-)	term is $40x^3$	A1	
			N3	
				[6]
6.	(a)	METHOD 1 ln $(x + 5) + \ln 2 = \ln (2(x + 5)) (= \ln (2x + 10))$	(A1)	
		interchanging x and y (seen anywhere)	(M1)	
		e.g. $x = \ln (2y + 10)$		
		evidence of correct manipulation	(A1)	
		<i>e.g.</i> $e^x = 2y + 10$		
		$f^{-1}(x) = \frac{e^x - 10}{2}$	A1	
		2	N2	
		METHOD 2	112	
		$y = \ln (x + 5) + \ln 2$		
		$y - \ln 2 = \ln (x + 5)$	(A1)	
		evidence of correct manipulation	(A1)	
		$e.g. e^{y - \ln 2} = x + 5$		
		interchanging x and y (seen anywhere)	(M1)	
		$e.g. e^{x - \ln 2} = y + 5$		
		$f^{-1}(x) = e^{x - \ln 2} - 5$	A1	
		$\int (x) = c \qquad -5$	N2	
			112	
	(b)	METHOD 1		
		evidence of composition in correct order	(M1)	
		<i>e.g.</i> $(g \circ f)(x) = g(\ln(x+5) + \ln 2)$		
		$= e^{\ln (2(x+5))} = 2(x+5)$		
		$(g \circ f)(x) = 2x + 10$	A1A1	
			N2	
		METHOD 2		
		evidence of composition in correct order $h(x+5) + h^2$	(M1)	
		e.g. $(g \circ f)(x) = e^{\ln(x+5) + \ln 2}$		
		$= e^{\ln (x+5)} \times e^{\ln 2} = (x+5) 2$		
		$(g \circ f)(x) = 2x + 10$	A1A1	
			N2	
-	(-)	(() 2(2 + 2 + 1) 12)	A 1	[7]
7.	(a)	$f(x) = 3(x^2 + 2x + 1) - 12$	A1	
		$=3x^{2}+6x+3-12$	A1	
		$= 3x^2 + 6x - 9$	AG	
	(1)		NO	
	(b)	(i) vertex is $(-1, -12)$	A1A1	
			N2	
		(ii) $x = -1$ (must be an equation)	A1 N1	
		(iii) $(0, -9)$	NI A1	
		(m) $(0, -2)$	N1	
		(iv) evidence of solving $f(x) = 0$	(M1)	
		<i>e.g.</i> factorizing, formula,	(1111)	
		correct working	A1	
		-		

$$e.g. 3(x + 3)(x - 1) = 0, x = \frac{-6 \pm \sqrt{36 + 108}}{6}$$

$$(-3, 0), (1, 0)$$
AlAl
Notes: Award AI for a parabola opening upward.
AI for vertex and intercepts in
approximately correct positions.
(d)
$$\begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} -1 \\ -12 \end{pmatrix}, t = 3$$
(accept $p = -1, q = -12, t = 3$)
AIAIAIN3
8. (a)
(i)
 $\sqrt{6}$
(ii)
(ii)
(ii)
(iii)
(i

IB Math – Standard Level Year 1 – Final Exam Practice - MarkScheme

[6]

ID IVIC	atii – 3i		Aler - Desert Academy 201
		$= \begin{pmatrix} 7 & -6 \\ -18 & 19 \end{pmatrix}$	A2
	6 M :	$= \begin{pmatrix} 12 & -6\\ -18 & 24 \end{pmatrix}$	A1
	$\begin{pmatrix} -5\\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ -5 \end{pmatrix} + \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$	A1
	k = 5		A1 N2
11.		Evidence of completing the square	(M1)
	f(x) :	$= 2(x^2 - 6x + 9) + 5 - 18$	(A1)
	= 2(.1)	$(x-3)^2 - 13$ (accept $h = 3, k = 13$)	A1
			N3
	(b)	Vertex is (3, -13)	A1A1
			N2
	(c)	x = 3 (must be an equation)	A1
			N1
	(d)	evidence of using fact that $x = 0$ at y-intercept	(M1)
		y-intercept is (0, 5) (accept 5)	A1
			N2
	(e)	METHOD 1 evidence of using $y = 0$ at <i>x</i> -intercept	(M1)
		e.g. $2(x-3)^2 - 13 = 0$	(111)
		e.g. $2(x-3) - 13 = 0$ evidence of solving this equation	(M1)
		<i>e.g.</i> $(x-3)^2 = \frac{13}{2}$	A1
		$(x-3) = \pm \sqrt{\frac{13}{2}}$	
		$x = 3 \pm \sqrt{\frac{13}{2}} = 3 \pm \frac{\sqrt{26}}{2}$	A1
		$x = \frac{6 \pm \sqrt{26}}{2}$	
		p = 6, q = 26, r = 2	A1A1A1 N4
		METHOD 2 evidence of using $y = 0$ at <i>x</i> -intercept	(M1)
		$e.g. 2x^2 - 12x + 5 = 0$	()
		evidence of using the quadratic formula	(M1)
		$x = \frac{12 \pm \sqrt{12^2 - 4 \times 2 \times 5}}{2 \times 2}$	A1
		$x = \frac{12 \pm \sqrt{104}}{4} \qquad \left(= \frac{6 \pm \sqrt{26}}{2} \right)$	A1
		p = 12, q = 104, r = 4 (or $p = 6, q = 26, r = 2$)	A1A1A1
			N4
			114

[15]

12. (a)

A1A1 N2 *Note: Award* **A1** *for the left branch, and* **A1** *for the right branch.*

(b)
$$g(x) = \frac{1}{x-2} + 3$$
 A1A1

(c) (i) Evidence of using
$$x = 0 \left(g(0) = -\frac{1}{2} + 3 \right)$$
 (M1)

$$y = \frac{5}{2}$$
 (= 2.5) A1

evidence of solving
$$y = 0$$
 (1 + 3(x - 2) = 0)
(A1)

$$\begin{aligned}
 1 + 3x - 6 &= 0 \\
 3x &= 5
 \end{aligned}
 (A1)$$

$$x = \frac{5}{3}$$
 A1

Intercepts are
$$x = \frac{5}{3}$$
, $y = \frac{5}{2}$ (accept $\left(\frac{5}{3}, 0\right)$ $\left(0, \frac{5}{2}\right)$)

(ii) x = 2 N3 A1

A1A1A1 N3

Note: Award A1 for the shape (both branches), A1 for the correct behaviour close to the asymptotes, and A1 for the intercepts at approximately $\left(\frac{5}{2}, 0\right)$ $\left(0, \frac{5}{2}\right)$.

or the intercepts at approximately
$$\left(\frac{3}{3},0\right)$$
 $\left(0,\frac{3}{2}\right)$

13.	(a)			
		Note: Award A1 for the general shape and A1 for the y-intercept at 1.	A1A1 N2	
	(b)	x = 3, x = -3	A1A1	
		× 1	N1N1	
	(c)	$y \ge 1$	A2 N2	
14				[6]
14.	(a) (b)	$(f \circ g): x \mapsto 3(x+2) (= 3x+6)$ METHOD 1	A2 N2	
	(0)	Evidence of finding inverse functions	M1	
		<i>e.g.</i> $f^{-1}(x) = \frac{x}{3}$ $g^{-1}(x) = x - 2$		
		$f^{-1}(18) = \frac{18}{3}(=6)$	(A1)	
		$g^{-1}(18) = 18 - 2 (= 16)$	(A1)	
		$f^{-1}(18) + g^{-1}(18) = 6 + 16 = 22$	A1	
		METHOD 2	N3	
		Evidence of solving equations e.g. $3x = 18$, $x + 2 = 18$	M1	
		x = 6, x = 16	(A1)(A1)	
		$f^{-1}(18) + g^{-1}(18) = 6 + 16 = 22$	A1 N3	
				[6]
15.	(a)	evidence of attempting to solve $f(x) = 0$ evidence of correct working	(M1) A1	
		e.g. $(x+1)(x-2), \frac{1\pm\sqrt{9}}{2}$		
		intercepts are $(-1, 0)$ and $(2, 0)$ (accept $x = -1, x = 2$)	A1A1	
		intercepts are $(-1, 0)$ and $(2, 0)$ (accept $x = -1, x = 2$)	N1N1	
	(b)	evidence of appropriate method	(M1)	
		<i>e.g.</i> $x_v = \frac{x_1 + x_2}{2}$, $x_v = -\frac{b}{2a}$, reference to symmetry		
		$x_v = 0.5$	A1	
			N2	[6]
				נטן
16.	(a)	(i) attempt to set up equations	(M1)	
		$-37 = u_1 + 20d$ and $-3 = u_1 + 3d$	A1	

 $-37 = u_1 + 20d \text{ and } -3 = u_1 + 3d$ -34 = 17d d = -2A1
N2

C:\Documents and Settings\Bob\My Documents\Dropbox\Desert\SL\SL1FinalExam.doc on 05/14/2012 at 10:17 PM

6 of 16

IB Ma	ath – Si	andard Level Year 1 – Final Exam Practice - MarkScheme	Alei - Desert	Academ	y 2011-12
		(ii) $-3 = u_1 - 6 \implies u_1 = 3$		A1	
	<i>(</i> 1).			N1	
	(b)	$u_{10} = 3 + 9 \times -2 = -15$		(A1)	
		$S_{10} = \frac{10}{2} \left(3 + (-15)\right)$		M1	
		= -60		A1	
				N2	
17.	(a)	$u_1 = 1, u_2 = -1, u_3 = -3$	A1A1A1	N3	[7]
1/.	(a) (b)	$u_1 - 1, u_2 - 1, u_3 - 3$ Evidence of using appropriate formula	AIAIAI	M1	
	(0)				
		correct values $S_{20} = \frac{20}{2} (2 \times 1 + 19 \times -2) (= 10(2 - 38))$		A1	
		$S_{20} = -360$		A1	
				N1	[4]
18.	(a)	$x^2 = 49$	(M1)		[6]
10.	(<i>a</i>)	$x = \pm 7$	(A1)		
		x = 7	A1	N3	
	(b)	$2^{x} = 8$		(M1)	
		<i>x</i> = 3		A1	
				N2	
	(c)	$x = 25^{-\frac{1}{2}}$		(M1)	
		$x = \frac{1}{\sqrt{25}}$		(A1)	
				(111)	
		$x = \frac{1}{5}$		A1	
		5		N3	
				183	
	(d)	$\log_2(x(x-7)) = 3$		(M1)	
	(u)	$\log_2 (x^2 - 7x) = 3$		(1011)	
		$2^{3} = 8$ (8 = $x^{2} - 7x$)		(A 1)	
		$2^{2} = 8^{2} (8 = x - 7x)$ $x^{2} - 7x - 8 = 0$		(A1) A1	
		$ (x - 8)(x + 1) = 0 \ (x = 8, x = -1) $		(A1)	
		x = 8		Al	
				N3	
10	(-)		(1)		[13]
19.	(a)	Recognizing an AP $u_1 = 15 \ d = 2 \ n = 20$	(M1) (A1)		
		substituting into $u_{20} = 15 + (20 - 1) \times 2$	(AI) M1		
		= 53 (that is, 53 seats in the 20th row)	A1	N2	
	<i>(</i> 1),				
	(b)	Substituting into $S_{20} = \frac{20}{2} (2(15) + (20 - 1)2)$ (or into $\frac{20}{2} (15 + 53))$		M1	
		= 680 (that is, 680 seats in total)		A1	
				N2	
30		5000/10/20/	L 4	N .T.1	[6]
20.	(a)	$5000(1.063)^n$ Value $5000(1.062)^5$ (500	A1	N1	
	(b)	Value = $$5000(1.063)^5$ (= $$6786.3511$) = $$6790$ to 3 s.f. (accept $$6786$, or $$6786.35$)		A1	
		$-\phi 0770 to 5 s.r. (accept \phi 0700, 01 \phi 0700.55)$		N1	
C:\Do	ocument	s and Settings\Bob\My Documents\Dropbox\Desert\SL\SL1FinalExam.doc on 05/14/201	2 at 10:17 PM	- • -	7 of 16
			-		-

IB Mat	:h – St	andaro	Level Year 1 – Final Exam Practice - MarkScheme	Alei - Desert Academy 201	11-12
	(c)	(i)	$5000(1.063)^n > 10\ 000\ \text{or}\ (1.063)^n > 2$	A1	
				N1	
		(ii)	Attempting to solve the inequality $n\log(1.063) > \log 2$	(M1)	
			<i>n</i> > 11.345	(A1)	
			12 years	A1	
				N3	
			<i>Note:</i> Candidates are likely to use TABLE or LIST on a GDC to find n.		
			A good way of communicating this is suggested below	OW.	
			Let $y = 1.063^{x}$	(M1)	
			When $x = 11$, $y = 1.9582$, when $x = 12$, $y = 2.0816$	(A1)	
			x = 12 i.e. 12 years	A1	
				N3	
					[6]

	<i>y</i>				
-2	-1 0	\times	\sum	$\frac{1}{4}$	→ _x

			M1A1 N2
		<i>Note:</i> Award M1 for evidence of reflection in x-axis, A1 for correct vertex and all intercepts approximately correct.	112
(b)	(i)	g(-3) = f(0)	(A1)
		f(0) = -1.5	A1
			N2
	(ii)	translation (accept shift, slide, <i>etc.</i>) of $\begin{pmatrix} -3\\ 0 \end{pmatrix}$	A1A1
			N2
(a)		rcepts when $f(x) = 0$	(M1)
	(1.54)	4, 0) (4.13, 0) (accept $x = 1.54$ $x = 4.13$)	A1A1

(b)

22.

[6]

N3

23.

/lath – Si	tandard Level Year 1 – Final Exam Practice - MarkScheme	Alei - Desert Acader
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1A1A1
		N3
	Note: Award A1 for passing through approximately $(0, -4)$, A1 for correct shape, A1 for a range of approximately -9 to 2.3.	
(c)	gradient is 2	A1
		N1
(a)	(i) $n = 5$ $T = 280 \times 1.12^5$	(A1)
	T = 493	A1 N2
	(ii) evidence of doubling	(A1)
	<i>e.g.</i> 560 setting up equation	A1
	$e.g. 280 \times 1.12^{n} = 560, 1.12^{n} = 2$ n = 6.116	(A1)
	in the year 2007	A1
	2 560 000	N3
(b)	(i) $P = \frac{2.5000000}{10 + 90 \mathrm{e}^{-0.1(5)}}$	(A1)
	$P = 39\ 635.993$	(A1)
	$P = 39\ 636$	A1 N3
	(ii) $P = \frac{2560000}{10 + 90\mathrm{e}^{-0.1(7)}}$	1.0
	$P = 46\ 806.997$	A1
	not doubled	A1
	valid reason for their answer	N0 R1
	e.g. P < 51200	4.2
(c)	(i) correct value	A2 N2
	$e.g. \frac{25600}{280}, 91.4, 640.7$	
	(ii) setting up an inequality (accept an equation, or reversed	

setting up an inequality (accept an equation, or reversed (ii) inequality) M1 [7]

A1 N1

(M1)

(b)

 Note:
 Award A1 for approximately correct (reflected) shape,
 N3

 Al for right end point in circle, A1 for through (1, 0).
 N3

$$0 \le y \le 3.5$$

(c)	interchanging x and y (seen anywhere)	M1
	$e.g. x = e^{0.5y}$	
	evidence of changing to log form	A1
	<i>e.g.</i> $\ln x = 0.5y$, $\ln x = \ln e^{0.5y}$ (any base), $\ln x = 0.5 y \ln e$ (any base)	
	$f^{-1}(x) = 2 \ln x$	A1
		N1

$$b = \frac{\pi}{6}$$
 AG

(iii) attempt to substitute (M1)

$$e.g. d = \frac{29+15}{2}$$

$$d = 22$$
 A1 N2

(iv)
$$c = 3$$
 (accept $c = 9$ from $a = -7$) A1

Note: Other correct values for c can be found, $c = 3 \pm 12k, k \in \mathbb{Z}$.

(b) stretch takes 3 to 1.5 (A1) translation maps (1.5, 29) to (4.5, 19) (so M' is (4.5, 19)) A1

N1

N2

C:\Documents and Settings\Bob\My Documents\Dropbox\Desert\SL\SL1FinalExam.doc on 05/14/2012 at 10:17 PM

IB Math – Standard Level Year 1 – Final Exam Practice - MarkScheme

 $g(t) = 7\cos\frac{\pi}{3}(t - 4.5) + 12$

y

(c)

Note: Award A1 for
$$\frac{\pi}{3}$$
, A2 for 4.5, A1 for 12.
Other correct values for c can be found
 $c = 4.5 \pm 6k$, $k \in \mathbb{Z}$.
(d) translation $\begin{pmatrix} -3\\10 \end{pmatrix}$ (A1)
horizontal stretch of a scale factor of 2 (A1)
completely correct description, in correct order A1
N3
 $e.g.$ translation $\begin{pmatrix} -3\\10 \end{pmatrix}$ then horizontal stretch of a scale factor of 2
(a) evidence of obtaining the vertex (M1)
 $e.g.$ a suraph $x = -\frac{b}{2}$ completing the square

e.g. a graph,
$$x = -\frac{2a}{2a}$$
, completing the square
 $f(x) = 2(x + 1)^2 - 8$ A2 N3
(b) $x = -1$ (equation must be seen) A1
(c) $f(x) = 2(x - 1)(x + 3)$ A1A1
N2

26.

Award A1 for correct domain, $0 \le x \le 3$. Notes: Award A2 for approximately correct shape, with local maximum in circle 1 and right endpoint in circle 2.

(b)
$$a = 2.31$$

-3 -2 -10

2 3

(c) evidence of using
$$V = \pi \int [f(x)]^2 dx$$
 (M1)

e.g.
$$V = \pi \int_0^{2.31} [x \cos(x - \sin x)]^2 dx, V = \pi \int_0^{2.31} [f(x)]^2 dx$$

[6]

A1N1

A2

11 of 16

A1A2 N3

Alei - Desert Academy 2011-12

A1A2A1

IB Ma	ath – St	andard Level Year 1 – Final Exam Practice - MarkScheme	Alei - Desert Academy 2011-12	
		<i>V</i> = 5.90	A1 N2	
28.	(a)	(i) evidence of combining vectors	[8] (M1)	
		<i>e.g.</i> $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ (or $\overrightarrow{AD} = \overrightarrow{AO} + \overrightarrow{OD}$ in part (ii))		
		$\vec{AB} = \begin{pmatrix} 2 \\ -4 \\ -2 \end{pmatrix}$	A1	
			N2	
		(ii) $\vec{AD} = \begin{pmatrix} 2\\ k-5\\ -2 \end{pmatrix}$	A1	
			N1	
	(b)	evidence of using perpendicularity \Rightarrow scalar product = 0 e.g. $\begin{pmatrix} 2 \\ -4 \\ -2 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ k-5 \\ -2 \end{pmatrix} = 0$	(M1)	
		4 - 4(k - 5) + 4 = 0	A1	
		-4k + 28 = 0 (accept any correct equation clearly leading to $k = 7$) k = 7	A1 AG	
		N0	10	
	(c)	$\vec{AD} = \begin{pmatrix} 2\\2 \end{pmatrix}$	(A1)	

$$\vec{BC} = \begin{pmatrix} 1\\ 1\\ -1 \end{pmatrix}$$
(11)
(11)
(11)

evidence of correct approach (M1)

$$\rightarrow \rightarrow \rightarrow (3) (1) (x-3) (1)$$

e.g. $\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC}$, $\begin{bmatrix} 1\\2 \end{bmatrix} + \begin{bmatrix} 1\\-1 \end{bmatrix}$, $\begin{bmatrix} y-1\\z-2 \end{bmatrix} = \begin{bmatrix} 1\\-1 \end{bmatrix}$ $\vec{OC} = \begin{pmatrix} 4 \\ 2 \\ 1 \end{pmatrix}$ A1

(d) **METHOD 1**

choosing appropriate vectors, BA, BC	(A1)
finding the scalar product	M1
e.g2(1) + 4(1) + 2(-1), 2(1) + (-4)(1) + (-2)(-1)	
$\cos ABC = 0$	A1
	N1

METHOD 2

IB Ma	th – Standard Level Year 1 – Final Exam Practice - MarkScheme	Alei - Desert Academ	y 2011-12
	\overrightarrow{BC} parallel to \overrightarrow{AD} (may show this on a diagram with points labelled)	R1	
	$\overrightarrow{BC} \perp \overrightarrow{AB}$ (may show this on a diagram with points labelled) $\overrightarrow{ABC} = 90^{\circ}$	R1	
	ABC = 90 $\cos ABC = 0$	A1 N1	[13]
29.	pw = pi + 2pj - 3pk (seen anywhere) attempt to find $v + pw$ e.g. 3i + 4j + k + p(i + 2j - 3k)	(A1) (M1)	
	collecting terms $(3 + p)i + (4 + 2p)j + (1 - 3p)k$ attempt to find the dot product <i>e.g.</i> $1(3 + p) + 2(4 + 2p) - 3(1 - 3p)$	A1 (M1)	
	setting their dot product equal to 0	(M1)	
	e.g. 1(3 + p) + 2(4 + 2p) - 3(1 - 3p) = 0 simplifying e.g. 3 + p + 8 + 4p - 3 + 9p = 0, 14p + 8 = 0	A1	
	$P = -0.571 \left(-\frac{8}{14}\right)$	A1	
		N3	[7]
30.	(a) (i) evidence of approach	M1	[/]
	e.g. $\overrightarrow{AO} + \overrightarrow{OB} = \overrightarrow{AB}, B - A$		
	$\vec{AB} = \begin{pmatrix} -4\\6\\-1 \end{pmatrix}$	AG	
	(-1)	N0	
	(ii) for choosing correct vectors, $(\overrightarrow{AO} \text{ with } \overrightarrow{AB}, \text{ or } \overrightarrow{OA} \text{ with }$		
	\overrightarrow{BA}) Note: Using \overrightarrow{AO} with \overrightarrow{BA} will lead to $\pi - 0.799$. If they then say \overrightarrow{BAO}	(A1)(A1)	
	= 0.799, this is a correct solution. calculating $\overrightarrow{AO} \cdot \overrightarrow{AB}, \overrightarrow{AO} , \overrightarrow{AB} $	(A1)(A1)(A1)	
	e.g. $d_1 \cdot d_2 = (-1)(-4) + (2)(6) + (-3)(-1) (= 19)$ $ d_1 = \sqrt{(-1)^2 + 2^2 + (-3)^2} (= \sqrt{14}),$ $ d_2 = \sqrt{(-4)^2 + 6^2 + (-1)^2} (= \sqrt{53})$ evidence of using the formula to find the angle e.g. $\cos \theta = \frac{(-1)(-4) + (2)(6) + (-3)(-1)}{\sqrt{(-1)^2 + 2^2 + (-3)^2} \sqrt{(-4)^2 + 6^2 + (-1)^2}},$	M1	

A1

N3 A1A1

$$\frac{19}{\sqrt{14}\sqrt{53}}$$
, 0.69751...
BÂO = 0.799 radians (accept 45.8°)

(b) two correct answers
e.g.
$$(1, -2, 3), (-3, 4, 2), (-7, 10, 1), (-11, 16, 0)$$

(c) (i)
$$\mathbf{r} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} + t \begin{pmatrix} -3 \\ 4 \\ 2 \end{pmatrix}$$
 A2

$$\begin{pmatrix} k \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} -3 \end{pmatrix}$$
 N2

(ii) C on
$$L_2$$
, so $\begin{pmatrix} n \\ -k \\ 5 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 3 \\ 4 \\ 2 \end{pmatrix}$ (M1)

evidence of equating components (A1)

$$e.g. \ 1-3t = k, -2 + 4t = -k, \ 5 = 3 + 2t$$

one correct value $t = 1, \ k = -2$ (seen anywhere) (A1)

coordinates of C are
$$(-2, 2, 5)$$
 A1

(d) for setting up one (or more) correct equation using $\begin{pmatrix} -2 \\ -2 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \end{pmatrix} \begin{pmatrix} 1 \\ -2 \end{pmatrix}$

$$\begin{pmatrix} -2\\2\\5 \end{pmatrix} = \begin{pmatrix} 3\\-8\\0 \end{pmatrix} + p \begin{pmatrix} 1\\-2\\-1 \end{pmatrix}$$
(M1)
$$a a 3 + p = -2 - 8 - 2p - 2 - p = 5$$

$$p = -5$$
 A1
N2 [18]

31. evidence of equating vectors(M1) $e.g. L_1 = L_2$ for any two correct equationsfor any two correct equationsA1A1e.g. 2 + s = 3 - t, 5 + 2s = -3 + 3t, 3 + 3s = 8 - 4tattempting to solve the equationsfinding one correct parameter (s = -1, t = 2)A1the coordinates of T are (1, 3, 0)A1N3

32. (a) (i) evidence of approach (M1)

$$e.g. \overrightarrow{AO} + \overrightarrow{OB}, B - A, \begin{pmatrix} 9-6\\-6+2\\15-10 \end{pmatrix}$$

 $\overrightarrow{AB} = \begin{pmatrix} 3\\-4\\5 \end{pmatrix}$ (accept (3, 4, 5)) A1 N2

(ii) evidence of finding the magnitude of the velocity vector M1
e.g. speed =
$$\sqrt{3^2 + 4^2 + 5^2}$$

[6]

IB M	ath – Si	tandard Level Year 1 – Final Exam Practice - MarkScheme	Alei - Desert Academy	2011-12
		speed = $\sqrt{50}$ (= $5\sqrt{2}$)	A1 N1	
	(b)	correct equation (accept Cartesian and parametric forms)	A2 N2	
		<i>e.g.</i> $\mathbf{r} = \begin{pmatrix} 6 \\ -2 \\ 10 \end{pmatrix} + t \begin{pmatrix} 3 \\ -4 \\ 5 \end{pmatrix}, \mathbf{r} = \begin{pmatrix} 9 \\ -6 \\ 15 \end{pmatrix} + t \begin{pmatrix} 3 \\ -4 \\ 5 \end{pmatrix}$		
				[6]
33.	(a)	evidence of addition	(M1)	
		<i>e.g.</i> at least two correct elements $\begin{pmatrix} 4 & 2 \end{pmatrix}$		
		$\boldsymbol{A} + \boldsymbol{B} = \begin{pmatrix} 4 & 2 \\ 1 & 0 \end{pmatrix}$	A1	
			N2	
	(b)	evidence of multiplication <i>e.g.</i> at least two correct elements	(M1)	
		$-3A = \begin{pmatrix} -3 & -6 \\ -9 & 3 \end{pmatrix}$	A1	
			N2	
	(c)	evidence of matrix multiplication (in correct order) e.g. $AB = \begin{pmatrix} 1(3)+2(-2) & 1(0)+2(1) \\ 3(3)+(-1)(-2) & 3(0)+(-1)(1) \end{pmatrix}$	(M1)	
		$AB = \begin{pmatrix} -1 & 2\\ 11 & -1 \end{pmatrix}$	A2	
		(11 - 1)	NIC	
			N3	[7]
34.	(a)	$\det M = -4 \qquad ((1 1))$	A1 N1	
	(b)	$\boldsymbol{M}^{-1} = -\frac{1}{4} \begin{pmatrix} -1 & -1 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$	A1A1	
			N2	
		<i>Note:</i> Award A1 for $-\frac{1}{4}$ and A1 for the correct		
		matrix.		
	(c)	$\boldsymbol{X} = \boldsymbol{M}^{-1} \begin{pmatrix} 4\\ 8 \end{pmatrix} \begin{pmatrix} \boldsymbol{X} = -\frac{1}{4} \begin{pmatrix} -1 & -1\\ -2 & 2 \end{pmatrix} \begin{pmatrix} 4\\ 8 \end{pmatrix} \end{pmatrix}$	M1	
		$X = \begin{pmatrix} 3 \\ -2 \end{pmatrix} (x=3, y=-2)$	A1A1	
			NO	
		<i>Note:</i> Award no marks for an <i>algebraic</i> solution		

35. (a) evidence of correct method (M1) *e.g.* at least 1 correct element (must be in a 2×2 matrix)

[6]

(-2-2q)	0		
$\boldsymbol{AB} = \begin{pmatrix} -2 - 2q \\ -6 + pq \end{pmatrix}$	$3 + \frac{p}{2}$	A1	N2

(b) METHOD 1 evidence of using AB = I (M1) 2 correct equations A1A1

e.g.
$$-2 - 2q = 1$$
 and $3 + \frac{p}{2} = 1$, $-6 + pq = 0$
 $p = -4$, $q = -\frac{3}{2}$ A1A1

METHOD 2

(c)

(i)

finding
$$A^{-1} = \frac{1}{p+6} \begin{pmatrix} p & 2 \\ -3 & 1 \end{pmatrix}$$
 A1

evidence of using
$$A^{-1} = B$$
 (M2)
 2 1 3 p 2 1 3

e.g.
$$\frac{1}{p+6} = 1$$
 and $-\frac{1}{p+6} = q$, $\frac{1}{p+6} = -2$ and $-\frac{1}{p+6} = q$
 $p = -4, q = -\frac{3}{2}$

A1A1

N1N1

[7]

36. (a) $A^{-1} = \begin{pmatrix} -1 & 1 & -1 \\ 1 & -0.5 & 1.25 \\ 1 & -0.5 & 0.75 \end{pmatrix}$ A2 N2

(b) (i)
$$I - \frac{1}{2}B = A^{-1}$$
 A1

$$-\frac{1}{2}\boldsymbol{B} = \boldsymbol{A}^{-1} - \boldsymbol{I}$$
 A1

$$B = -2(A^{-1} - I)$$
 AG
(ii)
$$B = \begin{pmatrix} 4 & -2 & 2 \\ -2 & 3 & -2.5 \end{pmatrix}$$
 A2

$$\begin{pmatrix} (1) & D & - \begin{pmatrix} -2 & 3 & -2.5 \\ -2 & 1 & 0.5 \end{pmatrix}$$
 N2

(iii) det
$$B = 12$$
 A1 N1

(iv) det
$$\boldsymbol{B} \neq 0$$
 R1

$$e.g. X = B^{-1}C$$

$$X = \begin{pmatrix} 0.333\\1\\1.33 \end{pmatrix} \begin{pmatrix} = \begin{pmatrix} \frac{1}{3}\\1\\\frac{4}{3} \end{pmatrix} \end{pmatrix}$$
A1

(ii)
$$4x - 2y + 2z = 2, -2x + 3y - 2.5z = -1, -2x + y + 0.5z = 1$$

N1
A1A1A1
N3

[13]