## Pre-DP Final Exam Practice Problems

The final will cover the 4 main topics that we studied this year 1) Vectors and Parametric Equations, 2) Circles and their equations, 3) Quadratic functions, and 4) Probability and Statistics.
Note: In addition to working these problems, you should review all your quizzes, tests, and your Semester Final.

1. A line $L$ passes through $\mathrm{A}(1,-1,2)$ and is parallel to the line $r=\left(\begin{array}{c}-2 \\ 1 \\ 5\end{array}\right)+s\left(\begin{array}{c}1 \\ 3 \\ -2\end{array}\right)$.
(a) Write down a vector equation for $L$ in the form $\boldsymbol{r}=\boldsymbol{a}+\boldsymbol{t} \boldsymbol{b}$.

The line $L$ passes through point P when $t=2$.
(b) Find
(i) $\overrightarrow{\mathrm{OP}}$;
(ii) $|\overrightarrow{\mathrm{OP}}|$.
(Total 6 marks)
2. In this question, a unit vector represents a displacement of 1 metre. A miniature car moves in a straight line, starting at the point $(2,0)$. After $t$ seconds, its position, $(x, y)$, is given by the vector equation

$$
\begin{equation*}
\binom{x}{y}=\binom{2}{0}+t\binom{0.7}{1} \tag{2}
\end{equation*}
$$

(a) How far from the point $(0,0)$ is the car after 2 seconds?
(b) Find the speed of the car.
(c) Obtain the equation of the car's path in the form $a x+b y=c$.

Another miniature vehicle, a motorcycle, starts at the point $(0,2)$, and travels in a straight line with constant speed. The equation of its path is

$$
y=0.6 x+2, \quad x \geq 0
$$

Eventually, the two miniature vehicles collide.
(d) Find the coordinates of the collision point.
(e) If the motorcycle left point $(0,2)$ at the same moment the car left point $(2,0)$, find the speed of the motorcycle.
3. The diagram below shows a line passing through the points $(1,3)$ and $(6,5)$.


Find a vector equation for the line, giving your answer in the form

$$
\binom{x}{y}=\binom{a}{b}+t\binom{c}{d}, \text { where } t \text { is any real number. }
$$

4. The vectors $\binom{2 x}{x-3}$ and $\binom{x+1}{5}$ are perpendicular for two values of $x$.
(a) Write down the quadratic equation which the two values of $x$ must satisfy.
(b) Find the two values of $x$.
Working:
Answers:
(a) $\qquad$
(b)
(Total 4 marks)
5. The line $L$ passes through the origin and is parallel to the vector $2 \boldsymbol{i}+3 \boldsymbol{j}$.

Write down a vector equation for $L$.
Working:
Answer:
$\qquad$
6. The following diagram shows part of the graph of $f$, where $f(x)=x^{2}-x-2$.

(a) Find both $x$-intercepts.
(b) Find the $x$-coordinate of the vertex.
7. Let $f(x)=2 x^{2}+4 x-6$.
(a) Express $f(x)$ in the form $f(x)=2(x-h)^{2}+k$.
(b) Write down the equation of the axis of symmetry of the graph of $f$.
(c) Express $f(x)$ in the form $f(x)=2(x-p)(x-q)$.
8. The quadratic function $f$ is defined by $f(x)=3 x^{2}-12 x+11$.
(a) Write $f$ in the form $f(x)=3(x-h)^{2}-k$.
(b) The graph of $f$ is translated 3 units in the positive $x$-direction and 5 units in the positive $y$-direction. Find the function $g$ for the translated graph, giving your answer in the form $g(x)=3(x-p)^{2}+q$.
9. The following diagram shows part of the graph of $f(x)=5-x^{2}$ with vertex $\mathrm{V}(0,5)$.

Its image $y=g(x)$ after a translation with vector $\binom{h}{k}$ has vertex $\mathrm{T}(3,6)$.

(a) Write down the value of
(i) $h$;
(ii) $k$.
(b) Write down an expression for $g(x)$.
(c) On the same diagram, sketch the graph of $y=g(-x)$.

In addition to understanding these problems, be sure to review circles and probability/statistics.

1. (a) correct equation in the form $\boldsymbol{r}=\boldsymbol{a}+\boldsymbol{b} \boldsymbol{b}$

A2 N22

$$
r=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)+t\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right)
$$

(b) (i) attempt to substitute $t=2$ into the equation

$$
\begin{align*}
& \text { e.g. }\left(\begin{array}{c}
2 \\
6 \\
-4
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right)+2\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right)  \tag{M1}\\
& \overrightarrow{\mathrm{OP}}=\left(\begin{array}{c}
3 \\
5 \\
-2
\end{array}\right) 3
\end{align*}
$$

(ii) correct substitution into formula for magnitude
e.g. $\sqrt{3^{2}+5^{2}+(-2)^{2}}, \sqrt{3^{2}+5^{2}+2^{2}}$

$$
|\overrightarrow{\mathrm{OP}}|=\sqrt{38}
$$

A1 N14
2. (a) At $t=2,\binom{2}{0}+2\binom{0.7}{1}=\binom{3.4}{2}$
(M1)
Distance from $(0,0)=\sqrt{3.4^{2}+2^{2}}=3.94 \mathrm{~m}$
(b) $\left|\binom{0.7}{1}\right|=\sqrt{0.7^{2}+1^{2}}$

$$
=1.22 \mathrm{~m} \mathrm{~s}^{-1}
$$

(c) $x=2+0.7 t$ and $y=t$
$x-0.7 y=2$
(d) $y=0.6 x+2$ and $x-0.7 y=2$
$x=5.86$ and $y=5.52\left(\right.$ or $x=\frac{170}{29}$ and $\left.y=\frac{160}{29}\right)$
(A1) 2
(M1)
(A1) 2
(M1)
(A1) 2
(M1)
(A1)(A1)3
(e) The time of the collision may be found by solving

$$
\begin{equation*}
\binom{5.86}{5.52}=\binom{2}{0}+\binom{0.7}{1} t \text { for } t \tag{M1}
\end{equation*}
$$

$\Rightarrow t=5.52 \mathrm{~s}$
[ie collision occurred 5.52 seconds after the vehicles set out].
Distance $d$ travelled by the motorcycle is given by
$d=\left|\binom{5.86}{5.52}-\binom{0}{2}\right|=\sqrt{(5.86)^{2}+(3.52)^{2}}$
$=\sqrt{46.73}$
$=6.84 \mathrm{~m}$
Speed of the motorcycle $=\frac{d}{t}=\frac{6.84}{5.52}$
$=1.24 \mathrm{~m} \mathrm{~s}^{-1}$
(A1) 5
3. Direction vector $=\binom{6}{5}-\binom{1}{3}$

$$
\begin{equation*}
=\binom{5}{2} \tag{A1}
\end{equation*}
$$

$\binom{x}{y}=\binom{1}{3}+t\binom{5}{2}$
OR

$$
\begin{equation*}
\binom{x}{y}=\binom{6}{5}+t\binom{5}{2} \tag{A2}
\end{equation*}
$$

4. (a) $\binom{2 x}{x-3} \cdot\binom{x+1}{5}=0$

> (M1)(M1)
$\Rightarrow 2 x(x+1)+(x-3)(5)=0$
$\Rightarrow 2 x^{2}+7 x-15=0$
(b) METHOD 1

$$
\begin{align*}
& 2 x^{2}+7 x-15=(2 x-3)(x+5)=0  \tag{C1}\\
& \Rightarrow x=\frac{3}{2} \text { or } x=-5 \tag{A1}
\end{align*}
$$

METHOD 2
$x=\frac{-7 \pm \sqrt{7^{2}-4(2)(-15)}}{2(2)}$
$\Rightarrow x=\frac{3}{2}$ or $x=-5$
5. Vector equation of a line $\boldsymbol{r}=\boldsymbol{a}+\boldsymbol{\lambda} \boldsymbol{t}$

$$
\begin{gather*}
\boldsymbol{a}=\binom{0}{0}, \boldsymbol{t}=\binom{2}{3}  \tag{M1}\\
\Rightarrow \boldsymbol{r}=\lambda(2 \boldsymbol{i}+3 \boldsymbol{j}) \tag{C4}
\end{gather*}
$$

[4]
(M1)(M1)
(A1)
6. (a) evidence of attempting to solve $f(x)=0$ evidence of correct working
e.g. $(x+1)(x-2), \frac{1 \pm \sqrt{9}}{2}$
intercepts are $(-1,0)$ and $(2,0)($ accept $x=-1, x=2)$
(b) evidence of appropriate method
e.g. $x_{v}=\frac{x_{1}+x_{2}}{2}, x_{v}=-\frac{b}{2 a}$, reference to symmetry
$x_{v}=0.5$
7. (a) evidence of obtaining the vertex
e.g. a graph, $x=-\frac{b}{2 a}$, completing the square
$f(x)=2(x+1)^{2}-8$
(b) $x=-1$ (equation must be seen)
(c) $f(x)=2(x-1)(x+3)$

## A1

A1A1N1N1 (M1)

A1 N 2
[6]
intercepts are $(-1,0)$ and $(2,0)($ accept $x=-1, x=2)$
(b) evidence of appropriate method
(M1)
e.g. $x_{v}=\frac{x_{1}+x_{2}}{2}, x_{v}=-\frac{b}{2 a}$,
(a) For a reasonable attempt to complete the square, (or expanding)
8.
e.g. $3 x^{2}-12 x+11=3\left(x^{2}-4 x+4\right)+11-12$
$f(x)=3(x-2)^{2}-1($ accept $h=2, k=1)$
A1A1 N3
(b) METHOD 1

Vertex shifted to $(2+3,-1+5)=(5,4)$
M1
so the new function is $3(x-5)^{2}+4($ accept $p=5, q=4)$
A1A1 N2
METHOD 2
$g(x)=3((x-3)-h)^{2}+k+5=3((x-3)-2)^{2}-1+5$
$=3(x-5)^{2}+4($ accept $p=5, q=4)$
M1
A1A1 N2
9. (a) (i) $h=3$

A1 N1
(ii) $k=1$

A1 N1
(b) $g(x)=f(x-3)+1,5-(x-3)^{2}+1,6-(x-3)^{2},-x^{2}+6 x-3$
(c)


Note: Award M1 for attempt to reflect through $y$-axis, A1 for vertex at approximately $(-3,6)$.
[6]

