EXERCISES 1.1.1
(1) (a)
$$u_n = \frac{1}{n(n+1)}$$
. Let $n = 1, 2, 3, 4$, giving
the first four terms $\frac{1}{1.2}$, $\frac{1}{2.3}$, $\frac{1}{3.4}$, $\frac{1}{4.5}$.
That is: $\frac{1}{2}$, $\frac{1}{6}$, $\frac{1}{12}$, $\frac{1}{20}$.

(b)
$$u_n = 3 + \frac{n}{3}$$
. Let $n = 1, 2, 3, 4$. giving
the first four terms $3 + \frac{1}{3}, 3 + \frac{2}{3}, 3 + \frac{3}{3}, 3 + \frac{4}{3}$.
Theat is: $\frac{10}{3}, \frac{11}{3}, 4, \frac{13}{3}$.

(c)
$$u_n = 5 + \frac{1}{n}$$
. Let $n = 1, 2, 3, 4$, giving
the first four terms $5 + \frac{1}{1}, 5 + \frac{1}{2}, 5 + \frac{1}{3}, 5 + \frac{1}{4}$.
That is: $b, 5\frac{1}{2}, 5\frac{1}{3}, 5\frac{1}{4}$.
(d) $u_n = n + 2^n$. Let $n = 1, 2, 3, 4$, giving
the first four terms $1 + 2^1, 2 + 2^2, 3 + 2^3, 4 + 2^4$.

(2) (a)
$$u_n = \frac{4n^2}{2n^2 - n}$$
. Let $n = 1, 2, 3, 4$, giving
 $\frac{4(1)^2}{2(1)^2 - 1}$, $\frac{4(2)^2}{2(2^2 - 2)}$, $\frac{4(3)^2}{2(3)^2 - 3}$, $\frac{4(4)^2}{2(4)^2 - 4}$
The first four terms: $4, \frac{8}{3}, \frac{12}{5}, \frac{16}{7}$.

EXERCISES 1.1.1

(b)
$$u_n = \frac{\sqrt{n}}{n}$$
. Let $n = 1, 2, 3, 4$, $g_1 v_1 n_q \frac{\sqrt{1}}{1}, \frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{3}, \frac{\sqrt{4}}{4}$.
The first four terms: $\frac{1}{\sqrt{2}}, \frac{\sqrt{2}}{3}, \frac{1}{2}$.
(c) $u_n = \frac{n}{(n+1)^2}$. Let $n = 1, 2, 3, 4$, $g_1 v_1 n_q$
 $\frac{1}{(1+1)^2}, \frac{2}{(2+1)^2}, \frac{3}{(3+1)^2}, \frac{4}{(4+1)^2}$
The first four terms: $\frac{1}{4}, \frac{2}{q}, \frac{3}{16}, \frac{4}{25}$.

$$(3) (a) 1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \dots \qquad u_{n} = \frac{1}{3^{n-1}}, n \in \mathbb{Z}^{+}.$$

$$(b) 1, -\frac{1}{3}, \frac{1}{9}, -\frac{1}{27}, \dots \qquad u_{n} = \frac{1}{(-3)^{n-1}}, n \in \mathbb{Z}^{+}.$$

$$(c) \frac{1}{2}, \frac{1}{5}, \frac{1}{10}, \frac{1}{17}, \dots \qquad u_{n} = \frac{1}{n^{2}+1}, n \in \mathbb{Z}^{+}.$$

$$(\textcircledle) u_n = \sqrt{2n + 2}. \quad \text{het } n = 1, 5, 10, 50, \text{ giving} \\ \sqrt{2 + 2}, \sqrt{10 + 2}, \sqrt{20 + 2}, \sqrt{100 + 2}. \\ u_1 = 3.4142; \quad u_2 = 5.1623; \quad u_1 = 0.4721; \quad u_{50} = 12. \\ (\textcircledle) u_n = \frac{n}{\sqrt{n}} = \sqrt{n}. \quad \text{het } n = 1, 5, 10, 50, \text{ giving} \\ u_1 = 1; \quad u_2 = 2.2361; \quad u_{10} = 3.1623; \quad u_{50} = 7.0711. \\ \end{array}$$

2

(c) $u_n = \arctan(n)$. Let n = 1, 5, 10, 50, giving $u_1 = \arctan(1) = T_4 = 0.7854$; $u_3 = \arctan(5) = 1.3734$; $u_{10} = \arctan(10) = 1.4711$; $u_{50} = \arctan(50) = 1.5508$.

EXERCISES 1111

(5) (a)
$$u_n = n^2 A in \left(\frac{\pi}{2^n}\right)$$
. Let $n = 1, 2, 3, 4$, giving
 $l^2 A in \left(\frac{\pi}{2}\right), 2^2 A in \left(\frac{\pi}{4}\right), 3^2 A in \left(\frac{\pi}{8}\right), 4^2 A in \left(\frac{\pi}{16}\right)$
First four terms: $l, \frac{4}{\sqrt{2}}, q_{A} in \left(\frac{\pi}{8}\right), 16 A in \left(\frac{\pi}{16}\right)$
(b) $u_n = \sqrt{n+2} - \sqrt{n}$. Let $n = 1, 2, 3, 4$, giving
 $\sqrt{3} - \sqrt{1}, \sqrt{4} - \sqrt{2}, \sqrt{5} - \sqrt{3}, \sqrt{6} - \sqrt{4}$.

(c)
$$u_n = \frac{h}{(n+1)!}$$
. Let $n = 1, 2, 3, 4$, giving
 $\frac{1}{2!}$, $\frac{2}{3!}$, $\frac{3}{4!}$, $\frac{4}{5!}$.
First four terms: $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{8}$, $\frac{1}{30}$.

(a)
$$\left\{\frac{n}{2}+i\right\}_{n=1}^{\infty} = \frac{1}{2}+i, \frac{2}{2}+i, \frac{3}{2}+i, \frac{4}{2}+i, \frac{5}{2}+i, \cdots$$

$$= \frac{3}{2}, 2, \frac{5}{2}, 3, \frac{7}{2}, \cdots$$

(b)
$$\left\{\frac{5}{n^{2}}\right\}_{n=1}^{\infty} = \frac{5}{n^{2}}, \frac{5}{2^{2}}, \frac{5}{3^{2}}, \frac{5}{4^{2}}, \frac{5}{5^{2}}, \cdots$$

= $5, \frac{54}{4}, \frac{56}{9}, \frac{56}{16}, \frac{1}{5}, \cdots$

(c)
$$\left\{1-\frac{1}{2^{n}}\right\}_{n=1}^{n} = 1-\frac{1}{2}, 1-\frac{1}{2^{2}}, 1-\frac{1}{2^{3}}, 1-\frac{1}{2^{4}}, 1-\frac{1}{2^{5}}, \cdots$$

= $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \frac{31}{32}, \cdots$

$$\begin{aligned} (e) \left\{ \left(1 + \frac{1}{2n}\right)^{2n} \right\}_{n=1}^{\infty} \\ &= \left(1 + \frac{1}{2}\right)^{2}, \quad \left(1 + \frac{1}{4}\right)^{4}, \quad \left(1 + \frac{1}{6}\right)^{6}, \quad \left(1 + \frac{1}{5}\right)^{8}, \quad \left(1 + \frac{1}{10}\right)^{10}, \dots \\ &= \frac{9}{4}, \quad \left(\frac{5}{4}\right)^{4}, \quad \left(\frac{7}{6}\right)^{6}, \quad \left(\frac{9}{8}\right)^{8}, \quad \left(\frac{11}{16}\right)^{10}, \dots \\ &= 1.25, \quad 2.4414, \quad 2.5216, \quad 2.5658, \quad 2.5937, \dots \\ &= 1.25, \quad 2.4414, \quad 2.5216, \quad 2.5658, \quad 2.5937, \dots \\ &= \frac{1.25}{n}, \quad 2.4414, \quad 2.5216, \quad 2.5658, \quad 2.5937, \dots \\ &= \frac{1.25}{n}, \quad 2.4414, \quad 2.5216, \quad 2.5658, \quad 2.5937, \dots \\ &= \frac{0}{3}, \quad 0.3466, \quad 0.3662, \quad 0.3466, \quad 0.3219, \dots \end{aligned}$$

EXERCISES 1111

$$() \left\{ n \operatorname{Aim}\left(\frac{\pi}{n}\right) \right\}_{n=1}^{\infty}$$

$$= \operatorname{Aim}\left(\pi\right), 2\operatorname{Aim}\left(\frac{\pi}{2}\right), 3\operatorname{Aim}\left(\frac{\pi}{3}\right), 4\operatorname{Aim}\left(\frac{\pi}{4}\right), 5\operatorname{Aim}\left(\frac{\pi}{5}\right), \cdots$$

$$= 0, 2, \frac{3\sqrt{3}}{2}, \frac{4}{\sqrt{2}}, 5\operatorname{Aim}\left(\frac{\pi}{5}\right), \cdots$$

$$= 0, 2, 2.5981, 2.8284, 2.9389, \cdots$$

(8)
$$u_{n+1} = 2(\sqrt{u_n} + 1), \quad u_1 = 1.$$
 het $n = 1, 2, 3.$
 $\implies u_2 = 2(\sqrt{1} + 1) = 4; \quad u_3 = 2(\sqrt{u} + 1) = b; \quad u_4 = 2(\sqrt{b} + 1)$
First four terms: 1, 4, b, $2(\sqrt{b} + 1).$

(9)
$$u_{n+2} = \sqrt{u_n \cdot u_{n+1}}$$
, $u_1 = 2$ and $u_2 = 4$.
het $n = 1, 2, 3$:
 $u_3 = \sqrt{u_1 \cdot u_2} = \sqrt{2.4} = 2\sqrt{2} = 2^{3/2}$;
 $u_4 = \sqrt{u_2 \cdot u_3} = \sqrt{4 \cdot 2^{3/2}} = \sqrt{2^{7/4}} = 2^{7/4}$;
 $u_5 = \sqrt{u_3 \cdot u_4} = \sqrt{2^{3/2} \cdot 2^{7/4}} = \sqrt{2^{13/4}} = 2^{13/8}$.
First five terms: $2, 4, 2^{3/2}, 2^{7/4}, 2^{13/8}$.

(b)
$$u_n = u_{n-1} + u_{n-2}$$
, $n \ge 3$, $u_1 = 1$, $u_2 = 1$.
 $u_3 = u_2 + u_1 = 2$; $u_4 = u_3 + u_2 = 2 + 1 = 3$;
 $u_5 = u_4 + u_3 = 3 + 2 = 5$; $u_6 = u_5 + u_4 = 5 + 3 = 8$.
First six terms: 1, 1, 2, 3, 5, 8. [Fibonaeci
Sequence]

EXERCISES 1111

$$\begin{split} & \left(\left\| \begin{array}{c} \left\{ u_{n} \right\}_{h=0}^{\infty} & wleve \quad u_{h+1} = \frac{1}{2} \left(u_{n} + u_{h-1} \right), \ h \geq 1 \\ & u_{0} = b , \quad u_{1} = a . \end{array} \right. \\ & \left\{ u_{n} - u_{n-1} = \frac{1}{2} \left(\left(u_{n-1} + u_{n-2} - \left(u_{n-2} + u_{n-3} \right) \right) \right) \\ & = \frac{1}{2} \left(u_{n-1} - u_{n-3} \right) \\ & = \frac{1}{2} \left[\frac{1}{2} \left(u_{n-2} + u_{n-3} \right) - u_{n-3} \right] \\ & = \left(\frac{1}{2} \right)^{2} \left[\left(u_{n-2} - u_{n-3} \right) - u_{n-3} \right] \\ & = \left(\frac{1}{2} \right)^{2} \left[\frac{1}{2} \left(u_{n-3} + u_{n-1} \right) - u_{n-3} \right] \\ & = \left(\frac{1}{2} \right)^{3} \left[u_{n-2} - u_{n-3} \right] \\ & = \left(-\frac{1}{2} \right)^{3} \left[u_{n-3} - u_{n-4} \right] \\ & = -\left(\frac{1}{2} \right)^{3} \left[u_{n-3} - u_{n-4} \right] \\ & = -\left(\frac{1}{2} \right)^{3} \left[u_{n-2} - u_{n-5} \right] \\ & = -\left(\frac{1}{2} \right)^{4} \left[u_{n-4} - u_{n-5} \right] \\ & = -\left(\frac{1}{2} \right)^{4} \left[u_{n-4} - u_{n-5} \right] \\ & = -\left(\frac{1}{2} \right)^{4} \left[u_{n-4} - u_{n-5} \right] \\ & = -\left(\frac{1}{2} \right)^{4} \left[u_{n-4} - u_{n-5} \right] \\ & = -\left(\frac{1}{2} \right)^{4} \left[u_{n-4} - u_{n-5} \right] \\ & = \left(-\frac{1}{2} \right)^{4} \left[u_{n-5} - u_{n-6} \right] \\ & = \left(-\frac{1}{2} \right)^{4} \left[u_{n-5} - u_{n-6} \right] \\ & = \left(-\frac{1}{2} \right)^{4} \left[u_{n-6} - u_{n-6} \right] \\ & = \left(-\frac{1}{2} \right)^{4} \left[u_{n-6} - u_{n-6} \right] \\ & = \left(-\frac{1}{2} \right)^{4} \left[u_{n-6} - u_{n-6} \right] \\ & = \left(-\frac{1}{2} \right)^{4} \left[u_{n-6} - u_{n-6} \right] \\ & = \left(-\frac{1}{2} \right)^{4} \left[u_{n-6} - u_{n-6} \right] \\ & = \left(-\frac{1}{2} \right)^{4} \left[u_{n-6} - u_{n-6} \right] \\ & = \left(-\frac{1}{2} \right)^{4} \left[u_{n-6} - u_{n-6} \right] \\ & = \left(-\frac{1}{2} \right)^{4} \left[u_{n-6} - u_{n-6} \right] \\ & = \left(-\frac{1}{2} \right)^{4} \left[u_{n-6} - u_{n-6} \right] \\ & = \left(-\frac{1}{2} \right)^{4} \left[u_{n-6} - u_{n-6} \right] \\ & = \left(-\frac{1}{2} \right)^{4} \left[u_{n-6} - u_{n-6} \right] \\ & = \left(-\frac{1}{2} \right)^{4} \left[u_{n-6} - u_{n-6} \right] \\ & = \left(-\frac{1}{2} \right)^{4} \left[u_{n-6} - u_{n-6} \right] \\ & = \left(-\frac{1}{2} \right)^{4} \left[u_{n-6} - u_{n-6} \right] \\ & = \left(-\frac{1}{2} \right)^{4} \left[u_{n-6} - u_{n-6} \right] \\ & = \left(-\frac{1}{2} \right)^{4} \left[u_{n-6} - u_{n-6} \right] \\ & = \left(-\frac{1}{2} \right)^{4} \left[u_{n-6} - u_{n-6} \right] \\ & = \left(-\frac{1}{2} \right)^{4} \left[u_{n-6} - u_{n-6} \right] \\ & = \left(-\frac{1}{2} \right)^{4} \left[u_{n-6} - u_{n-6} \right] \\ & = \left(-\frac{1}{2} \right)^{4} \left[u_{n-6} - u_{n-6} \right] \\ & = \left(-\frac{1}{2} \right)^{4} \left[u_{n-6} - u_{n-6} \right] \\ & = \left(-\frac{1}{2} \right)$$